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ABSTRACT

In a simulation a random variable, Y , can often be identified that 

is likely to be highly correlated with a random variable of interest, X .  If 

fj.y = E\Y] is known then Y  can be used as a control variate to estimate p x  — 

E[X]  more efficiently than by a direct simulation of X .  We propose a method 

tha t uses Y  to speed up the simulation when p y  is unknown. The method is 

effective when p y  can be efficiently estim ated in an auxiliary simulation that 

does not involve X .  For a simulation of length t  > 0 time units, we invest pt 

units estimating p y  with the auxiliary simulation, yielding an estimator Zpt. 

The remaining q =  (I — p)t units are spent on the main simulation yielding 

estimates (X qt,Y qt) for { p x , P v ) -  The two simulations can be interleaved so 

they are effectively done simultaneously. For each p E (0,1) and a  6 SR we 

have a quasi control variate estimator for p x

Q tip j & )  —  +  oc(Yqt — Zpt) ,t  >  0 .

iii
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We find p and a  that minimize the asymptotic variance of Qt(p, cn) 

in terms of statistics that are estimated during the sim ulations and then de­

scribe an easily implemented adaptive procedure that achieves the minimum 

variance. The adaptive procedure evolves into the optimal quasi control variate 

scheme if it is more efficient than a direct simulation, X t —> otherwise it

develops into the direct simulation. This research is m otivated by stochastic 

linear programs where problem data  are random; in this setting, we estimate 

the expected value of the objective function. We illustrate applications involv­

ing petroleum refining and power system reliability evaluation. In the former 

application the constraint m atrix is random and a simple approximation can 

be constructed to generate an effective control variate. For the power system 

reliability evaluation illustration, a special “dual” approxim ation to the primal 

problem is constructed to form an effective control variate. In both cases, a 

tremendous improvment in efficiency is realized.

This abstract accurately represents the content of the candidate’s thesis. I 

recommend its publication.

S igned__
Burton Simon
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1. Introduction

We are interested in estim ating the expected value of an output ran­

dom variable, X, involved in a simulation. In addition to obtaining a point 

estimate of p x  =  E[X\, we would like to make it as reliable as possible. The 

reliability of a point estimate is generally measured by its variance. In order to 

increase the reliability of an estimate, we attem pt to reduce its variablity with­

out increasing the sampling effort, which in simulations is generally measured 

in computer time. These methods are known as variance reduction techniques 

(VRTs) or efficiency-improving techniques.

This thesis generalizes a common VRT, the classical control variate 

estimation procedure, to the case when the control variate mean is unknown. 

We give motivation for this generalization, present theoretical results and de­

velop an algorithm for its implementation. In addition, numerical results in­

volving problems in engineering are presented dem onstrating the usefulness of 

our procedure.

Basically, a control variate is a random variable, used to improve 

efficiency in simulation experiments, whose expectation is known and that is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



correlated with a statistical estim ator of interest. By way of illustration, one 

can often identify a random variable Y ,  also involved in the simulation, that 

is likely to be highly correlated with X .  If so, using Y , an unbiased estimator 

of X  can be formed th a t is more efficient than a direct simulation of X  alone 

as follows:

Q { a ) = X  + a ( Y - / j L Y),

where a  is a scalar param eter (whose value is determined later as to not disrupt 

the flow of the introduction) and /ay is known.

We investigate the case where a random variable Y  might be an effec­

tive control variate candidate but where the mean /iy  of this random variable is 

unknown. We propose that in such cases it may be beneficial to spend time es­

tim ating this unknown control variate mean and then proceed with the classical 

control variate simulation by using the estimate in place of the true (unknown) 

mean. We call such an estim ator a quasi control variate (QCV). In Section 2 

we construct our QCV estimator and find its asymptotic variance in terms of 

optimal parameters tha t can be estimated during a simulation. We develop 

an easily implemented adaptive procedure, which achieves the minimum vari­

ance, that continually updates estimates of the simulation parameters. The 

adaptive procedure evolves into the optimal quasi control variate scheme if it 

is more efficient than a direct simulation, X t — fix', otherwise it develops into
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the direct simulation.. In Section 3 we present numerical results involving two 

“real-world” applications regarding petroleum refining and power system re­

liability evaluation. In Section 4 we conclude by discussing future work and 

extensions.

1.1 Background

Scientists are often interested in determining the values of unknown 

parameters in complex stochastic systems. For instance, in the simulation of 

a job shop environment, the length of time required to complete the work on 

a certain task may be a random variable of interest to the experimenter. He 

or she may wish to estimate the mean of this completion time to analyze the 

component flow and make decisions to help minimize the Total Flow Cost. 

In power system reliability evaluation, planners are interested in the system’s 

ability to supply energy to consumers by calculating a comprehensive set of re­

liability indices. Probabilistic indices such as loss of load probability (LOLP) 

and expected power not supplied (EPNS) are common performance measures of 

electric facilities. These indices are complicated functions of equipment outages 

and load duration and provide guidance in determining the need for reliabil­

ity improvements and system reinforcements. Also, financial decision-making 

problems can often be modeled as stochastic programs. In this case, given
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a sequence of investment decisions where the returns are random, a portfolio 

manager would be interested in the expected utility of terminal wealth. The 

aforementioned cases illustrate where certain information cannot be directly 

computed due to the complex and sophisticated nature of the problem.

These complexities are due, in part, to problem dimensionality and 

complicated function evaluations. The values of these param eters oftentimes 

are high-dimensional integrals whose integrand properties may be unknown or 

too complex to apply traditional numerical techniques. Thus, alternative ap­

proaches must be used to estimate these param eter values. We are particularily 

interested in the multidimensional integrals that occur in stochastic programs. 

Various approaches have been developed to address this problem of numerical 

integration in stochastic programs. The general problem requires some form of 

approximation. The most common approximations involve 1) discretizations 

of the probability distribution to produce bounds on these integrals and 2) 

Monte Carlo sampling. We are interested in the latter method of approxi­

m ation since the former is quite restrictive in that it requires a considerable 

amount of problem structure. Monte Carlo sampling is based on approximat­

ing the  integral by an average of values of the integrand at randomly selected 

points. Monte Carlo simulation is quite simple in nature and applies to virtu­

ally any problem. Often, the Monte Carlo method is the only useful approach
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in estim ating integrals, especially when the integrand is not explicitly given. 

Often experimenters need to estimate a certain quantity within a prescribed 

level of statistical accuracy. If the cost of achieving this precision is not within 

the computing time budget constraint, one may need to consider alternate 

sam pling plans tha t involve some method of variance reduction.

There are several VRTs commonly used in practice; however, the 

m ethod of control variates, is a popular variance reduction technique due to 

its simplicity and potential for widespread use. The availability of VRTs dis­

tinguishes the Monte Carlo method from the more simplistic sampling exper­

iments that preceded it. One strategy for obtaining a control variate is to 

use a simpler model’s known performance as a control variate to “correct” the 

principal, complex model’s output stream in hopes of reducing variability.

1.2 Literature Review

Little research has been devoted to the concept of QCV estimation, 

where a portion of a given simulation time is invested in estimating an unknown 

control variate mean. Quasi control variates (by another name) were consid­

ered by Schmeiser, Taaffe and Wang [11] as an alternative to baised control 

variates. Schmeiser, Taaffe and Wang [10]. Their analysis of QCV procedures 

relies on heuristically determined “cost” measures associated with estimating
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the control variate mean and performing the main simulation. Central to their 

analysis is that the simulation experiments have a finite number of replica­

tions; they do not consider asymptotics. We, provide an asymptotic analysis 

of QCV procedures in terms of asymptotic variance parameters, which can usu­

ally be estim ated (consistently) in a straightforward manner. Although their 

QCV procedure is not optimal from our (asymptotic) perspective, they make 

a strong case for using a biased estimate fry for fiy, instead of resorting to 

an unbiased estimator, in a time constrained simulation experiment where the 

approximation error, \p,y — fxy |, is sufficiently small in comparison with the 

simulation error.

1.3 Multidimensional Integration and Stochastic Programming

The methodology for one-dimensional integration has been exten­

sively developed. Research in numerical analysis has produced various quadra­

ture methods that are extremely effective in approximating definite integrals. 

Unfortunately, higher dimensional integration does not have such readily avail­

able formulae for their evaluation. A few of the major problems are discussed 

below.

Firstly, the domains of multidimensional integrals can take on an 

infinite variety of shapes that may not be transformable into simpler regions
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which would facilitate integration. Even if these transformations were available, 

they axe usually so clumsy and unmanageable tha t practitioners do not use 

them. Secondly, the “curse of dimensionality” is an inevitable problem for 

which numerical analysis has not offered effective remedies. For instance, if we 

need M  points to achieve a desired level of accuracy in one-dimension using 

product formulas, the required number of nodes would increase to M d in d— 

dimensions. Thus, the amount of work required to evaluate multidimensional 

integrals grows much faster than the num ber of dimensions. Also, little or no 

information may be readily available about the integrand in terms of its value, 

smoothness and variational characteristics. Lastly, error analysis is much more 

difficult in higher dimensions than in one-dimension, where strong bounds 

have been developed. Hence, one possibility to attem pt to circumvent this 

dimensional effect and accuracy question is to use Monte Carlo methods.

1.4 The Monte Carlo Method

Because Monte Carlo simulation appears to offer the best possibilities 

for higher dimensional integration [20], it seems to be the natural choice for 

use in stochastic programs. This method of “approximate integration” requires 

pseudorandom numbers generated from a given distribution; since the integrals 

involved are in the form of expectations, probability theory gives justification
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for this approach. An early application of the Monte Carlo method includes 

estimating the value of 7r by throwing a needle at parallel lines at equal dis­

tances and then counting the number of times the needle crosses the lines [30]. 

More descriptively, suppose we want to estimate

U. =  E[g{X)\  = f  g(x) dPx (x), (1.1)

where g is a function of n variables and X  = (X 1, X 2, . . . ,  X n) is some random 

vector having a given distribution function Px(')-  To approximate g, we can 

generate M  independent and identically distributed (i.i.d.) replicates of X ,  

{Xi, X 2, . . . ,  X iV/}, and then compute

* =  ( i.2)

By the strong law of large numbers (see Theorem 2.2), we know that

i 'J Jo  m  = "  (1'3)

almost surely (a.s.). Thus, we can use the average of the generated points 

g(Xi ) , i =  1 , . . . ,  M  as a Monte Carlo estimate of 11. This is the approach we 

take for estimating high-dimensional integrals. The variance of the estima­

tor (1.2) is

8
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a g(X) /Mi  (1-4)

which, is a measure of the resulting error in a Monto Carlo simulation. This 

means th a t the standard error of the estim ator is proportional to 1 / \J~M which 

can be regarded as slow convergence. In addition, this error can be large 

and thus variance reduction techniques are employed in order to obtain more 

reliable estim ates of ji. The implementation of the Monte Carlo method is 

relatively simple and can apply to virtually any function. Also, an estimate 

of the deviation (1.4) can be obtained from the Monte Carlo simulation with 

little additional effort. For further information on Monte Carlo computations, 

see Hammersley and Handscomb [31]. This estimation procedure is the basis 

for stochastic programming problems.

R e m a rk  1.1 Note that (1.4) is merely the variance of the “parent” random 

variable divided by the number of realizations used to calculate the sample 

mean. This fact will be important to remember in the development of Sec­

tion 2.2.

1.4.1 S to c h a s tic  P ro g ra m m in g  P ro b le m s

T he use of quantitative methods proved to be very successful for the 

analysis of m ilitary operations during World War II. In particular, the invention

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the Simplex method by G.B. Dantzig [16] to solve linear programming prob­

lems marked the inception of the usage of analytical approaches, which became 

to be known as operations research, to solving problems in planning, alloca­

tion and scheduling. The development of modeling and solution techniques that 

would allow for stochastic elements within problem data quickly accelerated 

in the 1950s due, in part, by the rapid growing interest of the great potential 

mathematical techniques had to “real world” problem solving where uncer­

tainty was prevalent. This uncertainty is usually characterized by a probability 

distribution on the parameters. In practice it can range from a few possible 

scenarios to specific and precise joint probability distributions. Early applica­

tions include an airline fleet-assignment problem by Ferguson and  Dantzig [25], 

where passenger demand on each route was uncertain, and the  classical diet 

problem first studied by Stigler [55] and latter employed by Dantzig [17] where 

nutritional variations within food groups were considered. At th a t time these 

types of applications were known as Linear Programming under Uncertainty 

and eventually developed into a branch of optimization known as Stochastic 

Programming. This field deals with the theory and methodology of incorpo­

rating probabilistic, or stochastic, variations into an optim ization model. The 

necessity of this incorporation is evident in problems such as portfolio manage­

ment, energy modeling, airline scheduling, production planning and inventory

10
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theory where the assumption of certainty in problem da ta  cannot be justified. 

Thus there are numerous applications where traditional deterministic mathe­

m atical programming models are inadequate and the decision maker is faced 

with incorporating uncertainty in an appropriate and realistic manner without 

making solution procedures computationally intractable. The origin of the var­

ious stochastic programming models of today stems from the two-stage linear 

program presented independently by Dantzig [15] and Beale [5], the chance- 

constrained. model developed by Charnes and Cooper [12] and the distribution 

problem given by Tintner [56] and Mangasarian [42]. In the two-stage pro­

gramming problem, or what is commonly known as the recourse problem, an 

initial decision is made without the realization of the uncertain parameters; 

and adjustm ents are made once a specific realization of the data is observed to 

minimize to ta l expected cost. An im portant class of probabilistic programming 

arises when we assume chance constraints, or constraints that place lower limits 

on the probabilities of satisfying certain inequalities. Often these problems can 

be converted into deterministic ones. The distribution problem of stochastic 

programming is the calculation of the expected value of the objective function 

of a m athem atical program in which model coefficients are uncertain and the 

values of the decision variables are chosen after the uncertainty is resolved. 

Such stochastic programs where decisions can be made after the randomness is

11
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observed are called wait and see models. This research deals exclusively with 

the distibution problem.

The general formulation of a stochastic program is the following:

minx E[f0(x,€)]

s.t. E\f i (x,  £)] <  0, i =  1 , . . . ,  s,
(1.5)

£[/*(*. O] = 0 >  i =  s -h  1, . .  . ;m,  

x e X C  f t " .  

fi, i =  0 , . . . ,  m  are real valued functions.

The “expectation functionals” are defined as follows:

?)] = f s  M x , 0  dP(() i =  0 , . . . , m, (1.6)

where £ is a random vector with support E C and P  is a probability 

distribution defined on $Rfc.

R e m a rk  1.2 Since we a concerned with only the distribution problem of 

stochastic programming we will not be directly working with problems in the 

form of (1.5). This information is provided for clarity and completeness. Al­

though our research directly applies to such problems in estimating the expec­

tation functionals, we are primarily interested in estim ating the expected value 

of stochastic programs with random data.

12
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More specifically, we are interested in estim ating the mean E[X\  of the objec­

tive function value of linear programs in the following form:

X  =  min { cx |.4:r >  b, x  > 0}. (!•")
x<=5Rn

where some of the problem data A, b are random.

Only in small specialized cases can the integrals in (1.6) be calculated 

analytically. Generally, applied problems of interest require the evaluation 

of high-dimensional integrals, an inherent problem in the field of stochastic 

programming. Approximation schemes, Monte Carlo estimation and bounding 

methods are a few approaches used in dealing with their evaluation. We are 

primarily interested in the Monte Carlo approach.

1.4.2 Efficiency—Improving Techniques

Efficiency-Improving Techniques or variance reduction techniques are 

experimental design methods used to increase the precision of simulation- 

sampling based point estimators w ithout increasing the sampling effort. Recent 

research in stochastic programming involves developing intelligent sampling 

procedures such as stratification, importance sampling and control variates 

to obtain at least as “good” estimates with smaller sample sizes. Gaivoron- 

ski [Private Communication] uses stratified sampling in stochastic quasi gradi­

ent (SQG) methods in the parallel setting. SQG methods are search procedures

13
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that use statistical estimates of gradients and employ analogous deterministic 

search procedures such as decent methods, except where the actual gradients 

are replaced by statistical estimates. Infanger [32] used importance sampling 

as a variance reduction technique in a Monte Carlo sampling-decomposition 

algorithm for solving large-scale stochastic linear programs. There are many 

different VRTs; however, we consider only one, the method of control variates. 

Before we motivate the notion of control variates, we give a definition that is 

important in its development.

D efin ition  1.3 (C o rre la tio n  C oeffic ien t) The correlation coefficient,

denoted by p x y , of random variables X  and Y  is defined to be

Px y  =
O’X Y  

o~x OV

provided that c t x y ,  °~x  > 0 and oy >  0 exist.

The correlation coefficient is a measure of a linear relationship of X  

and Y . The correlation coefficient is unitless and satifies — 1 <  p x y  <  1- Values 

of P x y  close to 1 indicate a positive linear relationship and values close to -1 

indicate a negative linear relationship. Values of p x y  close to 0 indicate no 

linear relationship.

14
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1.4.3 C o n tro l  V a ria tes

The method of control variates is a common and widely used ap­

proach to variance reduction. The development of these techniques began 

during World War II in order to increase the efficiency of the Monte Carlo 

evaluation of integrals that arose in nuclear particle transport problems. A 

through exposition and detailed description of the method of control variates 

can be found in [40]. For selected applications where control variates were im­

plemented, see [38, 39, 47, 50, 54]. The idea is to exploit possible correlations 

between random  variables within a  Monte Carlo simulation. We consider the 

one-dimensional case. Let the random variable X  be an output random  vari­

able in a simulation for which we would like to estimate its mean, fix-  Suppose 

there is another random variable Y  generated in the same simulation for which 

we know its mean, fiy. We can see tha t the following random variable is an 

unbiased estim ator of

Q(a ; = X  + a ( Y  — fly), (1.8)

where a  is a scalar parameter. The random variable Y  is called a control 

variate for X .  Also, we find th a t

OqM =  Ox +  2 a c r X Y  +  o?a \.

15
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Using basic calculus, it can be verified that

a  = (1.9)

minimizes the variance of Q(a). The amount of variance reduction is quantified 

in the following expression:

a Q(a-) — (1  — Px y )a ix> (1.10)

where (rXY is the correlation coefficient of X  and Y.

Thus, we immediately see that the higher X  and Y  are correlated in 

magnitude, the higher the variance reduction of Q(a*). Unfortunately, a* is 

generally not known in advance and must be estimated from the simulation. 

If n  simulation runs are performed resulting in (Xi, Yi), i =  1 , . . . ,  n, then we 

can estim ate a* by

a  = -  X n)(Xi -  Y n) 
T . U ( Y i - Y n)*

where X n, Y n are the sample means of X  and Y,  respectively; see [40, page 

637].

Of course, before we can employ this method of variance reduction, we 

must have available a control variate with known mean that is highly correlated 

with X  and relatively easily evaluated. The selection of a control variate is more

16
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of an art than a science. Since Monte Carlo simulations are driven in part 

by sequences of i.i.d. random variables for which we know the distributions, 

often simple functions of these input streams serve as good control variables. 

For example, let X  be an output random variable that represents the average 

waiting time in some queue for the first 100 people: suppose we want to estimate 

Hx- A reasonable control variate for X  is the average service time, say Y,  

of the first 99 customers. That is, longer-than-average service times tend to 

yield longer-than-average waiting times and vice versa. Note that we know i±Y 

since we generated the service-times from a known input distribution. Thus, 

this is a simple example illustrating how functions of the input sequence of 

random variables can serve as control variates. VVe refer to such control variates 

as internal since they are “freely” available (within the simulation) and add 

nothing to the simulation costs.

In some applications, an approximate and analytically solvable model 

is constructed tha t reflects the basic characteristics of the larger complex prob­

lem. This simplified model has the property th a t we can precisely determine 

the value of certain parameters, i.e, the means of output random variables that 

are not readily available in the complex problem. Both models are employed in 

the Monte Carlo simulation and driven by the same sequence of input random

17
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!

variables. Functions of the approximate model can provide good control vari­

ates for the output variable of the complex model. Thus, provided that there 

are strong correlations between random variables of the respective models, the 

solution of the analytical problem is used to “predict” or “control” the result 

of the detailed one. These types of control variates are called external since 

they are not costless; that is, they involve another simulation to evaluate the 

control variate. In our research we employ external control variates.

18
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2. The Quasi Control Variate Method

One of the barriers to widespread application of control variates is 

the potential difficulty in selecting an appropriate control variate with known 

expectation. Oftentimes, an experimenter has strong reason to believe that 

a given random variable V, whose mean is unfortunately unknown, may be 

highly correlated with the variable in which he or she is interested. Thus, the 

scientist must be content with a possibly less effective control variate or must 

seek alternative variance reduction methods. We propose that in many cases 

it might be beneficial to spend time estim ating this unknown control variate 

mean and then proceed with the classical control variate approach by using 

the estimate in place of the true (unknown) mean. The main concern is the 

allocation of valuable simulation time to a variable whose mean we are not 

interested in. Why spend effort, which could be used estimating the parameter 

of interest, on a different variable? One can see that if the proposed control 

variate is highly correlated with the variable of interest and relatively less ex­

pensive to generate realizations, it might be advantageous to apportion some

19
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of the work to estim ating the control variate mean. Thus, we propose a  gener-

In the following sections, we extend the methodology of control variates and 

present various practical applications.

2 .1  P re lim in a rie s

The following are important theorems in probability and can be found 

in most texts such as [61].

T h eo re m  2.1 (C onvergence  in  p ro b a b ility )  For a sequence X \ ,  X o , . . . ,  X n

of i.i.d. random variables with finite mean p  and variance cr2 define X n =

1 71
— X{, then
n fr!

Since t can be arbitrarily small, X n becomes arbitrarily close to p  as n —» oo. 

We say that X n converges in probability to p  and denote this by

T h eo rem  2 .2  (A lm o st su re  convergence) For a sequence X i , X 2, . . . , X n 

of i.i.d. random variables with finite mean p,

alized control variate technique called the quasi control variate (QCV) scheme.

lim P r ( \X n — p\ > t) =  0 for any t > 0. (2 .1)

— p
X n —y p. as n  —> oo. (2 .2)

(2.3)

where X n is given in Theorem 2.1.

20
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We say that X n converges almost surely to p, and denote this by

D efin itio n  2.3 (C onvergence  in  d is tr ib u t io n )  Suppose that-Yn, n =

1 . 2 . . . ,  and X  are random variables with distribution functions Fn, n =

1 .2 . . . ,  and F  respectively. We say that X n converges in distribution 

to X ,  denoted X n= > X ,  if

for all x  a t which F  is continuous.

D efin ition  2 .4  (C o u n tin g  process) A stochastic process {N(t) ,  t > 

0} is said to be a counting process if X(t)  represents the to ta l number 

of “events” or “epochs” tha t have occurred up to time t. Define 2\ to 

be the time of the first event and for n > 1, let Tn denote the elapsed 

time between the (n — l)st and nth  event.

Now, we give the definition of a counting process called a delayed 

renewal process, which will become important in the development of the quasi

X n —¥ p a.s. as n —r oo. (2.4)

Almost sure convergence implies convergence in probability.

Fn(x)—*F(x) as n —> oo, (2.5)

control variate approach.

21
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D efin itio n  2.5 If the sequence of nonnegative random variables {Ti, T2, . ■ -} 

is independent and (T2, T3 . . .}  is identically distributed, then the count­

ing process {N(t),  t > 0} is said to be a delayed renewal process. If Xi 

has the same distribution as (T2, T3 ...} , then the counting process is 

said to be a renewal process.

We shall let F  denote the interarrival distribution, and to avoid trivial­

ities, assume that P r{T 2 =  0} <  1, so that T2 is not identically 0. Furthermore, 

let fi =  E\p 2\.

Note, in the definition above, we allow for T\ to have a different distribution

than the common distribution of P2, T3 __

The following theorems (see [28] and [61] respectively) are im portant 

in the development of the variance of our quasi control variate.

T h e o re m  2.6 (E le m e n ta ry  R enew al T h e o re m ) Let N{t)  be defined ac­

cording to Definition 2.5 and p  =  E  [T2], then

N(t)  1 
l im  =  — a.s..

t - ¥  O O  t
(2 .6 )

T h e o re m  2.7  (S lu tsky) If {Xn}, {L)i} are sequences of random variables on
p

some probability space with X n= ^ X  and Yn —> c, where c is a finite constant,

22
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then

X nYn= > c X .  (2.7)

We now sta te  and prove a lemma tha t will be useful in the develop­

ment of our quasi control variate.

L em m a  2.8 Let F  be the distribution function of a random variable f  with 

finite mean p. and variance a2. Also let { N ( t ) , t  >  0} be a delayed renewal 

process representing the total number of replications of f  available up to time 

£, where the expected time to generate an observation of <f is 0 <  r  <  oo and 

the expected time to initialize the simulation is 0 <  7  <  00 . Also, define

1 w *
(2 -8 )

where {£j, £v(t)} are replications of £.

It follows that

v / £ ( £ - M)=^iV (0 ,r< r2). (2-9)

We refer to the quantity r a 2 as the asymptotic variance parameter (AVP) for 

6 -

Proof: We first prove that N(t)  00 as t  —> 00 , a.s.. Define

Wn = Y t Di n > l ,  (2 .10)
i — l

23
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where D\  is the time to set up the Monte Carlo simulation (overhead) plus the 

time to generate fi; also, for i > 2 let Di be the time required to generate the 

i th replication of Then, it is clear that

N(t)  > k <=* Wk < t.

The probability distribution of Wn can be calculated by

(2 .11)

P r ( W n < x }  = Fn(x), (2 .12)

where Fi(x) = F{x) is assumed known, and Fn(x) is calculated by the convo­

lution formula:

roo
Fn(x) = /  F„_ i(x -  y)dF(y), n =  2, 3, 

Jo
(2.13)

From Statement (2.11) we obtain

Pr{N(t )  = k} = Pr{N ( t )  > k} -  P r {N ( t )  > k + 1} (2.14)

=  P r { W k < t } ~  P r { W k+l < t}. (2.15)

Therefore, from (2.13) P r{N ( t )  =  k} =  Fk(t) — Fk+i(t), k  =  1, —  Now, 

let k' be given, we find tha t P r{ l  <  N ( t ) < kr}=  H yJl1 (Fj(t) — Fj+i(t)) =  

Fi(t) — Fk'{t) which converges to 0 as t —» oo. Since this is true for each k!, 

N(t) —¥ oo a.s. as t  —> oo. Now,

&  ~  A  ■

24
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In the previous expression, yjjfoy converges in probability to y/r  by (2.6) and 

the remaining portion converges in distribution to N ( 0, cr2) by the Central 

Limit Theorem since N ( t ) —>• oo as t  —t oo. Thus, it follows from Slutsky’s 

theorem that \/i{£i — p) converges in distribution to iV(0,Tcr2). □

R e m a rk  2.9 Note that (2.9) is an asymptotically exact result and implies

that for large t, is approximately distributed as a normal distribution with
*>

mean p  and approximate variance Recall, 7  is the expected time required

to initialize the simulation and no realizations of £ are generated during this

time, thus we subtract it from t  in the denominator of the approximate variance

term. We assume that t is large enough so that is approximately distributed

as a normal distribution and tha t the overhead 7  is not negligible. Note that

this expression makes intuitive sense. Since the expected time to generate an

observation of £ is r ,  the expected number of copies of f  we should have after

t units of time is Hence, we expect the variance of £ to be approximately 
•>

73T- Since we are interested in how overhead affects the simulation, we willc I
2use, for fixed t, as a measure of simulation efficiency. We will refer to this 

measure of simulation efficiency and refer to it as the  asymptotic approximation 

of variance AAV.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2  T h eo re tica l D ev e lo p m en t

An experimentor is interested in estim ating the parameter fj-x- He or

she has available the following three simulation programs for the task: simula­

tion A, simulation B and simulation C.

Simulation A is a direct crude Monte Carlo simulation th a t simply

generates {X 1. X 2 , - - -} i.i.d. replicates of X .  This simulation consists of the 

overhead associated with setting up the experiment and the actual i.i.d. gen­

eration of the random  variable X .  We assume that the time to generate a 

random observation of X  is random. To this end, let > 0 represent the 

finite mean time it takes to generate a copy of X .  Also, the overhead time may 

also vary and so we let ka denote the finite mean of the random overhead time 

for simulation A. Finally, let N A{t) be the delayed renewal process associated 

with the generation of replicates of X .  T hat is, the first event or epoch occurs 

with the completion of overhead and the generation of X\.  The next epoch 

occurs with the generation of X 2, and so on. Thus, simulation A generates the 

following statistics:

1 Wa(0

and

26
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Simulation B also estimates fix, but it keeps track of additional quan- 

tites in the hope that the overhead associated with collecting them pays off in 

improved simulation efficiency. Simulation B provides the following statistics:

(Xt , Yt, a 2x (£), £ (£), (£)),

which are defined below, kb is the mean overhead time associated with sim­

ulation B. Analogously to simulation A, let >  0 represent the finite mean 

time required to generate one replicate of the pair ( X ,Y ) .  This simulation 

also has a delayed renewal process associated with it, namely iVB(£), where the 

first event represents the time to complete the overhead and generate the first 

pair (X i ,  Yi). The remaining events correspond to generating further copies of 

(X, Y ) .  Thus, we can write
•, NB{t)

( * - * )  =  15)Na(t) &
t I i VbW

1 EN s (£ )  V N B (t)  i=l

and

< 4  ( t)  =  1
i A'dSU

(2.17)

(2.1S)

(2.19)
1' v' '  N B{t) \ N B{t)

In the classical method of control variates, simulation B is used to

construct

x ;  = x t -  -  i,Y ).o y (£)

27
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Note that this method requires that p Y is known exactly. There are many 

examples where p Y is unknown, but p2XY ^  (potentially) large, suggesting 

a potential for a significant improvement in efficiency by using simulation B 

instead of A.

We propose to use simulation C in conjunction with simulation B 

to construct an estimator that is analogous to (2 .20) when p Y  is unknown. 

Simulation C estimates p Y and produces the following statistics:

1 Nc{t)

=  i t  (2 '21)

and

( 2 ' 2 2 )

where Z  is a consistent estimator for p Y , N c ( t ) is the associated delayed re­

newal process, kc is the associated mean overhead and rz >  0  is the finite 

mean time to generate one copy of Z.  Let k ~  kb + kc and q =  1 — p. We can 

divide t units of time between simulations B and C and construct an estimator 

for [ix  as follows:

Qtijp, a) =  X qt -f- a(Yqt -  Z pt) for t  > 0 . (2.23)

Note, we will often eliminate the subscripts of X qt, Yqt and Z pt to facilitate the 

presentation.

I
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The implication of the Remark 2.9 is th a t now we have derived the 

AAV of Thus, fortified with this knowledge we apply it to calculating the 

AAV of Qt(p, a) given as follows:

v2{p, a:) =   ------------  r  +  a 2
( £ - « ) ( l  - p )  

2arxyaxY

Txy&Y r^ 2Z
( £ - r e ) ( l - p )  ( i-« )p _

- x r A r  , 2 24)

where p is the fraction of time executing simulation C, q =  1 — p is the fraction 

of time spent executing simulation B and a  £  3R.

Thus, we have found v2(p, a)  as a function of p and a. Note, tha t this expression 

is the AAV of Qt(p, a) as long a s O < p < l .  I fp  =  0 then we must have a  =  0 

so tha t Qt(p,a) reduces to X t. l i p  =  1 then Qt(p,a)  does not estimate px-. so 

this case is not relevant.

R e m a rk  2.10 In order to avoid trivial or pathological situations, we assume 

that d x ,  and <r| are positive and finite; otherwise, the quasi control variate 

procedure would not be applicable or appropriate. In addition, we assume that

0 <  p \ Y <  1.

One natural question arises. How long should we estimate the control 

variate mean with (2.21) (simulation C) and continue with our estimation of p x  

with the main simulation (2.17) (simulation B) to arrive at our final estimate 

Qt? We sacrifice the time th a t could be spent estim ating p x ,  by allocating too

29
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much effort to the estimation of p y  by Z pt. Likewise, if too little time is spent 

estim ating py ,  then X t (simulation A) may be a better estimate of p x  than 

Qt. Hence, we expect there exists an optim al proportion of time that should 

be devoted to estimating each mean. We formulate this problem by obtaining 

the optim al proportion p* and coefficient a* (the optimal QCV parameters) 

required to minimize the AAV of the estim ator Qt.

We first offer a definition and a common theorem [41] that relate to 

optimization.

Definition 2.11 Given a convex set fi, a function /  on the set Q is 

strictly  convex if x l , x 2 6  Q, x l ^  x 2 implies

/ ( A x 1 +  (1 — A)x2) < A f i x 1) +  (1 — A ) f { x 2) where 0 < A <  1.

Theorem 2.12 Let /  6 C2 be a strictly convex function defined on a region Q 

in which the point x* is an interior point. Suppose in addition that V f( x * )  = 0. 

Then x* is the unique global minimum of f over

The following theorem establishes an im portant property of v 2 and 

will be useful in finding the the optimal pair (p*, a*):

i Theorem 2.13 v2(p, a) defined by (2.24) is a strictly convex function over the
Ii
j convex set S  =  {(p, a ) | — oo <  a  < oo, 0 <  p <  1}.

30
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Proof: It is sufficient to show that the Hessian of v2, V v 2(p,a),  is posi­

tive definite for all points in S. Recall from, linear algebra tha t the Hessian of 

v2(p, a).

V 2v2(p, a) =

is positive definite on S if and only if

d o  o-y-
d a 2 dadp

d 2v2 d2v2 
dpda  dp2

Det (V2u2(p, a)) =

d~v2(p, a)
dtf-

d2v2(p, a) d2v2(p, a) f  d2v2(p, a ) \~
da2 dp2 dpda

V(a,p) G 5.

>  0 and

>  0

We find that

d2v2(p, a ) 
da2 

d2v2(p, a) 
dp2

and

d2v2(p, a) 
dadp

=  2 + TzO~z > 0,
_ ( t - « ) ( l - p )  { t - K ) p  J

2 (a p 2 +  a ( a ( r xya 2x p 3 -  r za 2z (p -  l ) 3 ) +  2 T ^ a x v P 2)) 
( t  — k ) p 3 (j > — l ) 3

2 (a(Txycr$p2 -  Tza 2z {p2 -  2p +  1)) +  rxyaXYp2) v  p G (0;
(t - k)p 2(p  - 1 y

We find
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D et(V 2u2(p, a))

=  4 [rxy02xP2{TXyO-YP 4- Tza l ( l  -  p)) 4- a 2rxya y Tza 2z (l  -  p)

4- rxyo-A-rp(2ar2cr|(l -  p )  -  r x y a X Y p 2 )] / ((£ ~  «=)V(1 ~  P)4)-

Note that for p €  (0,1) this expression is positive if and only if the numerator

is positive which is given as follows:

^[rxya 2xp2(Txya0yp 4- r 2c r |( l  -  p)) 4- a 2Txyo-yTzaz (l  -  p)

+  rxycrxv-p(2Q!r2cr |(l -  p) -  7-xycrx r p2)]

=  4 ['rJ /(crx°'r  -  4 r ) p 3 +  t-*»Ox-t-*^Ip 2(1 -  P) +  a V ^ c J ^ c r 2 (1 _  p)

4- 2arxyax r rzcr^p(l -  p)]

=  42Txy(a%o-y -  cr%Y)p3 4- 4(1 -  p)rxyrza2z [{axt)2 4- (erra)2 4- 2<r*rpa]

. 2 /• 2 2 ■> \ 3 ./I \ 2 9 , 0Y 9 , 0 CTxr
=  -  T vr)?  +  4(! -  P)TXyTzaz ax o-Y — P +  — ■a + 2— — Pay VOy aX &X&Y

=  4 r2 cr2-cr2-(l -  p2)p3 4- 4(1 -  p)rxyrza 2z a x a Y f  — p2 4- — a 2 4- 2ppa
a \  CTy  &x

=  4(1 -  p)T^Tza \ o x U Y { p ^ ^  +  if p =  1,

=  4(1 -  p ) T x y Tz a 2z a x a Y { p J §£ -  a / | * r )2 if P =  - 1 .

> (2riycrxcrv')2(l — p2)p3 >  0 otherwise.

Thus, from the above expressions we can conclude th a t V 2u2(p, a) is positive 

definite on S  if |p| < 1. □

We now give the biggest result from this section, namely the Theorem

th a t establishes what the optim al QCV parameters, (p*,a*) are.
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I

T h eo re m  2 .14  Let r  =  ' ^ Z° z  The function v2(p, a) has a unique global
y/T’xyO’Y

minimum at (p*, a *) subject to the condition p £  [0.1) where

y / r 2p%v ( l - r 2) { l - p \ . v ) - r 2{ l - r 2 
(1 - r 2) ( l - r 2- p ^ r )

P = 1 - 2 pX Y

if r 2 -+- p \ Y  7̂  f an<i  P x y  >  r ~ 

if r 2 -f- Pxy =  anh p \ Y  > r 2 

if Pxv < r2>

(2.26)

and a* =  — where<TXr

\/PA-y-(l~r2)(I~Pvy)-i~r(r2- 1)
( l- '’2)[\/p’i'y(>--''2)(l-p:vK)-rp^:v]
2pVv~l

Px y

if r 2 -F Pxv f an<f P x r  > T~

if r 2 -F p^-y =  1 and p 2X Y  > r 2

. r O ^  O
if P x y  ^  r -

(2.27)

Proof: We first show that if p2XY > r2 then p* is an interior point of [0.1).

We consider the following three cases: (i) pXY >  max(r2. l  — r2), (ii) r 2 < 

min(P xr , 1 — Px y ) an-d (hi) r 2 + pXY =  f> Px y  > r 2 - In case (i) we have that

1 — r2 < p2x v  which implies tha t y/1 — r 2 < |pXy I and yT — p2XY < r. Thus,

we have ^ J {  1 - r 2)( l  -  p 2X Y )  <  r \ p X Y \

f  — p \ y  <  r \ P x v \
- pIX Y

l - r 2

1 -  P x y  ~ r 2  <  r \ p X Y \
' I  ~  P x y  

1 — r 2
— r

(1 -  r 2)( l  -  p2XY -  r2) < \]r2p2X Y{l -  r 2) ( l  -  p \ Y) -  r 2( l -  r 2)

1 > P \
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i

where the last implication follows by dividing both  sides of the inequality by

the negative quantity (1— r 2) ( l — p\ Y~ r2)- Case (ii) is similar to case (i) except

tha t the sense of the inequalities in the series of implications above is reversed 

with the exception of the last statement. Case (iii) is trivai. Thus, we have 

proven that p* < 1. We now show p* > 0. Suppose we are in cases (i) or (ii).

a n d  o n ly  i f  t h e  p r o d u c t  o f  t h e  p r e v io u s  e x p r e s s i o n  a n d  t h e  d e n o m i n a t o r  o f  p* 

is  p o s i t i v e .  W e  f in d  {p \ y 0- — Px y ) — r 2 ( l  ~  r 2 ) ) ( l  — r 2 ) ( l  ~  Px y  ~  r 2 ) =  

(1  — r2)(pXY — r 2)(r2 +  p2XY — I ) 2 w h ic h  is  p o s i t i v e  i f  a n d  o n ly  i f  pXY >  r2. 

C a s e  ( iii)  i m p l i e s  t h a t  pXY >  r 2 = 1 — p2XY p2XY >  1/2 th u s ,  (2.26b) g iv e s

p* >  0 .

We now show that Vu2(p*,o;*) =  0. We now find and set V v 2(p ,a ) equal to 

the zero vector.

Note the that the numerator of p* is ( ^ )  0 \ j r2PxY(l  ~  r2)( l — Px y ) 

dv2(p, a) 
dp

 , 2 ‘xyvy_______
( t - K )  2 [ ( ! - p )2 p2

_ 2 TxyO’y
 r  X +  a   X
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2arxyaxY  
(1 - P ) 2 .

=  0 .

Solving for a  in (2.28) above yields the following:

a  = -T’xyO’XYP
Txyrtp +  TzCT2z (l  -  P) 
—O’XY f  P

°Y \ P + ( l ~  p)r ~

For notational convenience let

Pip) =
P

p +- (1 — p)r2 '

so that

a  = —<Tx y

>Y
P{P)-

Now, substituting this into equation (2.29) above yields the following:

Tx y ( & x { T x y O y P  +  i 1 ~  P ^ z ^ z f  ~  r x y G 2X Y { r xyG ^ p 2

+ ( 1  - p ) ( r za l ( p  +  1 ) ) ) )  = 0

Txyayp  +  (1 — p)rza \  \  2 2 2 2
~  Txy P xy \aYTxyP

2 2 
°X<*Y gy

+  (1 - p ) { r za2z {p + 1)))] = 0

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)



f  TxyCTyP + (1 ~  P)fo<4)
l ST. r I '*ya y

2 2 2 / 2  
“  TxyPxY^Y(P

+ (1 - p ) ( r 2( p +  !)))] = 0  (2.36)

' rxy a  yP +  (1  - p ) ( r str%y

o'r
2 2 r *>

-  rxyPxy{P

+  ( l - p ) ( r 2(p +  l)))] = 0  (2.37) 

[rxyp +  (1 -  p )riy (r2) ) 2 -  r ^ p ^ p 2

+  ( l  -  p )(r2(p +  1)))] =  0 (2.38) 

( p  +  ( 1  -  p ) { r 2) ) 2 ~  Pxy(JP2 +  i l ~  P 2 ) 7*2 )' xy

2 _  £(P2)
P x r  — o/ \2■

/ W

=  0 (2.39)

(2.40)

Using the quadratic formula we can solve equation (2.40) for p and obtain 

expressions (2.26a,b). Now, using equation (2.31) we find a* to arrive at ex­

pressions (2.27a,b). Thus, it follows from Theorems 2.12 and 2.13 that (p*,a*) 

is the unique global minimum of v2 over S  when p2x y  > r 2. If p2XY < r2 

then we note from expression (2.31) that for fixed p € (0 , 1) the optimal QCV 

coefficient is the following:

=
—aXy P

P Oy \ P  +  ( 1  — P)T21
(2.41)

Substituting this expression into (2.24) yields
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* >  =  (1 -  p +  (X -p ) r» )- P- 42)

It follows that

v2(p> oc*) < <r% <=> 0 < p <  (2-43)1 — r-

Thus, if r 2 > p \ Y , then v2(p, <*p) >  crx  for every p E (0.1). which implies that 

p* =  0 and therefore a* =  0 as well. □

The significance of the previous theorem is that wre now have in closed 

form the values of (p*,a*) in terms of a common statistical parameter. p \ Y 

and a parameter r 2 whose interpretation is given next. Also, it is important 

to note that the clever algebra and factoring in (2.34) through (2.40) renders 

this possible; otherwise, the formulas for (p*,a*) would have been confusing, 

disordered functions of rxy, rz, aY, a \  and <j Xy -

R e m a rk  2.15 The definition of r has an im portant interpretation. One should 

think of r  as the ratio of the “effort” required to generate a realization of the 

control variate Z  verses a copy of (A', Y )  in the main simulation. As will be 

seen in the following sections, for the quasi control variate approach to be 

beneficial, r  needs to be small.

The following proposition offers an im portant interpretation of 

P%y P(p*)- We can interpret p2XYf3(p*) as the asymptotic squared correlation
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between X q.t and Yq-t — Zp-£.

P ro p o s it io n  2.16 Let W t =  Yq-t — Zv-t , then p —*• p\-y /3(pm) a.s. 

as t  —> oo.

Proof: (Note: to facilitate notation, we will often omit subscripts when the con­

text is clear.) We first show that cr2- =  c r L t o  justify the step from (2.44) 

to (2.45). Independent of t  we have

4  ^  =  E [ X { Y - Z ) }  -  E [X]E[Y  -  X)

= E [X  Y] -  E[X  Z] -  E[X]E[Y  -  Z]

=  E [ X Y ]  -  E[X]E[Z\ -  E[X]{E[Y] -  [Z])

=  E [X  Y] -  E[X]E[Z\

= E [ X Y ] - E [ X ] E [ Y ]

2— 0~x y-

Thus,

i ^ W £) =  ^ p\ , y ~z V) (2-44)

=  l im  (2.45)
^oo a \ { a \  +  4 )

( Q’\rv A2
l im  — ;-------y * ^ ) ) ---------------------------------- (2 .4 6 )
t—>oo ai- f +

yy{tg~)____________  /p  .
t->oo ^-2 _ 2  f Nc(.tp~)+NB(tq~)r2Txv 1  ̂ ' '

L N B{tq-)Nc {tp-)Tz J
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=  lim X Y
t—y oo t2 „2 h , iVB(tq-)TIvr21rK aY \ l +  Nc{tP-)T; J

(2.48)

We now show that the expression in brackets in equation (2.48) converges a.s. 

to 1 //3(p*). Note that

N B(tq*)Txyr2
N c {tp')rz

= l + tP* Nejtq*) rxy tq*
Nc(tpm) tq* rz tp*

and that it follows from the Elementary Renewal Theorem (2.6) that the first 

two terms in this last expression converge to a.s. as t —¥ oo. Hence, p^.-^(t) 

converges to

° x v
4 4  [l  ■+■

which is equal to PxY@{P*)- n

The following Lemma is extremely important in th a t it establishes 

precisely what the AAV of Qt(p*,a*) is.

L em m a 2.17 The optimal AAV for Qt {p*,a*) is the following:

Tx y a X

(t -  «)(1 - p * ) (1 ~PXY0{P*)) (2.49)

Proof:

Tx y a X ______

( t - « ) ( l  ~p*) t — K
Tx y <JY + Tz<Tz

(1 - p * )  p* _
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I
i1

- r
2 ( - zp c p (p*))Txya x Y

(£ - /-c ) ( l-p * )

t — K 
1

t  — K 
1

t — K 
1

t  — K

T x yQ -x  T x y c A c Y ^ i v * )  -  2 / 3 ( p * ) )  T z a 2z a 2X Y P 2 { p ' )

i - p *  c r^ ( i-p * )  <4 p-

. 2 f Px y (P2(p *) -  2 /3 (p * ) )  Px y P2(p ’ ) t 2
+  r*y<Lv ---------     1--------

rxyGX 
1 -p * P*(1 -p * )

’rxy^x . _ 2 ( (0 (P * )~  2) /3(p*)r2\  ,  '
1 ^ 7  +  (  i Z  p- +  p  J  PxY^iP )

rxycr2x  rXy(JxP\-YP(p')
1 — p* 1 — p*

Ti»CTi

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
(t -  k )(1 — p*)

We now determine for which values of p and r  th a t p* >  0.

T h e o re m  2.18 The following statements are equivalent:

(a) p* >  0 (It is optimal to devote some time to simulation C.),

(b) v2(p*,a*) < Tlty°f? (The optimal QCV procedure has a lower AAV than 

simulation B alone.),

(c) r 2 <  p2Y r.

Proof: The proof of Theorem (2.14) shows tha t (a) and (c) are equivalent.

Since p* and a * are the unique optimal param eters, we have v2(p*,a*) < 

t;2(0, 0) =  when p* >  0. If p* = 0  then (2.43) implies that a" =  0,

so (a) and (b) are equivalent. □

We now state a Central Limit Theorem for Qt{jp*,et*). This theorem 

is im portant in that we establish the approximate distribution of Q t for large
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I

t. This is im portant in constructing confidence intervals for Qt. 

T h e o re m  2.19 As t -+ oo, Vi(Qt -  fix ) = ^ N  ^0, -  Pxr&iP*)))

Proof:

Vi(Qt(p*, of) -  fix )

=  V i (X tq. +  oZ(Ytq- -  Z tp.) -  fix) 

=  V i(X t q -  —  fix ) 4 -  a* Vi(Ytq- — fiy) — a~Vi(Z tp- -  fiy)

V i j N c t t p ' )  r _
=  ----- /■ [ ( ^ V  — V x )  +  a * ( ¥ tq -  — P y ) \

y /N c iW )

—a
„ s / iy /N B(tq*)

\ Z t p -  — P y )
y jN B(tq*)

^ r  ^\jXc{tp*) { X tq* 4- c fY lq- — (fix  4- a*py))
\ j N c (tp*)

—a V i

V W  V t

\J N b (tq*)
\JNB(tq*)(Ztp- -  fiY)

y/NC(tp*) V W
\J Xc(tp*) (Xtq- +  cfYtq' — (PX 4- a ’fly)) 

yjtfr V i
—a \J X B(tq*)(Ztp- — fiy )

s /N B(tq*) V W

Note, the coefficients of the bracketed expressions in the last equality:

y/tq* V i

and

yjNC(tp*) V W

V W  V i
\ f  N B(tq*) V W
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converge a.s. to and respectively as t  —> oo. Also, the associated

bracketed expressions converge in distribution to a iV(0, a% + cry + 2(Yctxy) 

and iV(0 ,c r|), respectively. Thus, it follows from Slutsky’s Theorem, and the 

independence of (X, Y ) and Z  that as t  —>• oo,

However, the variance given in the distribution above can be simplified to 
2

(1 ~ Px y P (p*)) • «̂Tote, the algebra for this simplification is given in (2.50)- 

(2.55) and we do not reproduce it here. □

2.3 Implementation

Recall that the classical control variate estimator for fix  was given as

follows:

where a* is an unknown scalar parameter that must be estimated from the

simulation. T hat is, if n replications of (X, Y)  are generated resulting in 

(X{, Y{), i =  1, . . . ,  n, then we can estimate a* by

where X n, Y n are the sample means of X  and Y ,  respectively. In QCV analysis

Q ( Q * )= X  + a ’ ( V - / i y ) . (2.56)

(2.57)
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one must estim ate two unknown parameters, a * and p*. Here, an implementa­

tion of the QCV estimation procedure is more complex. The simulation must 

“simultaneously” estimate a* and determine how long to estimate the control 

variate mean, by estimating p*. [21] develops a dynamic QCV procedure that 

continually updates estimates of r and p2XY an-d adaptively changes the amount 

of CPU time th a t is devoted to estimating the QCV mean and performing the 

main simulation. We now describe this procedure in detail.

2.4 An Optimal Dynamic QCV procedure

In order to estimate p x  an experimenter has available the three sim­

ulations A, B and C as described in Section 2.2. An optimal experimental 

design is developed using these simulations where the criterion for optimality 

is to minimize the AAV. The optimal QCV procedure basically runs all three 

simulations continually collecting and updating statistics in order to direct the 

overall simulation by dynamically changing the amount of time spent on each 

of the simulations. We divide the simulation into n  time segments and allocate 

different portions to simulations A, B and C. W ithout loss of generality we 

assume that the time segment is unit length and the nth  time step occurs at

t  =  n, n = 0 ,1 ,2 ,  (We assume that one unit of time is enough to allow

for any overhead associated with our procedure.) After the (n — l)s£ time
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segment we update estimators of r  and pXY based on all simulation data up 

to that point in order to revise our scheme for the nth  segment. The strategy 

for the nth  segment is represented by the fractions of time spent on simula­

tions A. B and C denoted by (r 4̂, ). Define at,bt and ct to be the CPU 

times devoted to simulations A, B and C up to time t  and f£drx(<it), Txyax (bt), 

Txy&Yibt), fxyaxY^bt), fz&zict), to be estimates of the unknown r ^ a x , rxycrx- 

rxyaY , rxyaXY, Tz°'Z', so that we can define

\ /T z O - z ( c t )  2 ^  a - x v i p t )
r t =  — r= :— t t -  a n d  P x Y \ t )  =  — (2.58)

yfKyVYiPt) ““ “  ^  W <fx{pt)*Y{bt)' 

as the estimates of r  and pXY, respectively, based on all simulation data up to 

time t. Now, based on Theorem 2.14, define:

Pt =  < 1 - 2 P-XYh)'

and a t =  — a , whereO'y-(Ot)

> frîfX1 Px y W) A l1 ^t) i f f 2 I n2 (f) ^  1 and 52 (t)  ( i - f ‘t ) a - n - p j c Ylt)) ’ 11 Tt +  Px y W  T  1 ^  Px y W  "  ‘ t

if r2 -(- P x Y {t) =  1 and p2X Y {t) >  r f

iiPxY  < r2>
(2.59)

m < if f ‘ + *  1 “ d > f?(̂ “rt)[v^XV,W( rt )(̂  PJcytO) rtPxY^
if f l  +  p-X Y {t) =  1 and p2X Y {t) >  r f  

if Px y  ^  r2i
(2.60)

CX =  2pyy(t) —1
P xy( t )  ’
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to be the estimates of p* and a* up to time t; let qt =  1 — pt and construct the 

estim ate of v2(p*,am) to be

! *  -  ( i , +Ct _  ; : ! l c )(1  _  Pl) (*  -  . (2 .6 D

Also, a t time t  we can estimate the AAV of X t from simulation A as

u\  =  2^ 1M .  (2.62)
at — k-a

Let

A t = u 2t -  v2.

If at ,bt and c( grow without bound, estimates of all the parameters will con­

verge almost surely to their exact values, which are needed to decide whether 

X t or Q t(p*,a*) is more efficient. On the other hand, we want to spend an 

asymptotically negligible fraction of time running a suboptimal experimental 

design.

We now describe the recommended QCV procedure. Let 5i G (0, | )  i =  

1, 2 , . . .  be a sequence satisfying the following conditions:

5i 0 ,

O O

Si = oo
t = l
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and

Now, assign Tq - > 0, r0B >  0 and Tq >  0 time units to simulations A, B and C 

in the zeroth segment where Tq + t b +  Tq — 1. For n  >  1, the simulations are 

assigned

rnB =

r?  =

and

(1 -  2£n)max(gn, 5n), if An > 0 

Sn if &n <  0 ,

(1 -  2£n)max(pn, 5„), if A„ >  0

if A„ <  0.

=  1 — TB — T^'  n  ' n  ’ r7

(2.63)

(2.64)

' n ' n (2.65)

time units in the n th  segment. At time t  we can estim ate fix  by the following 

weighted average of X at(from simulation A) and X bt -i- a t{Ybt — ZCt) (from 

simulations B and C). For t > 0 let

( X b, + a t (Yb' - Z c, ) ) , (2 .66 )

and let Vq, be the AAV of Q[.
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I»1ft
i
!|
!

!
it
t!

Ii

ii

j

In summary, pseudo code for the QCV procedure for t  > 0 units of simulation 

time is given as follows:

Initialize Tq > 0, r 0s  >  0, Tq7 > 0 such that r 0A + r0s  +Tq =  1: let n = 0. 
begin

while (n <  t ) do
[1] Run simulations A, B and C for r A, and r% units of time resp.
[2] Obtain estimates o fpn and o:n using (2.58), (2.59) and (2.60).
[3] Find A n =  using (2.61) and (2.62).
[4] Let n <— n  +  1.
[5]Using (2.63), (2.64) and (2.63), assign values for r A, t.f  and r„. 

end while

output:

end

We now offer justification why the recommended QCV procedure is 

a reasonable algorithm. Note, for the following results, we reference [21]. So 

far, all of our analyses regarding simulation efficiency allowed for overhead. 

To warrant the previous algorithm, we need to understand how the algorithm 

behaves as t  —>■ oo. Thus, asymptotically, overhead is negligible and we consider 

the asymptotic variance parameters (see Remark 2.9) of each of the estimators
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X t and Qt, namely

2 A  2 
u  =  TX °X

and

Txy 
(1 -p * )

Pv~ = , xy X\ - I 1 --------=----- tP \ yp* -F q*r2 ' ,

which are estim ated by

and

Tx y  a ~X

iX -P t)
1 -

Pt
Pt +  Qtr t

respectively.

Simply put, in the QCV algorithm, replace the AAV of each estim ator with its 

asym ptotic variance parameter (AVP). (Notice that the asymptotic variance 

param eters are independent of £.) Having established that, we can now justify 

our algorithm. First, at, bt and ct each grow without bound as t  —> oo. Thus,

?t ► r , P x y ( t )  Px y > ^ x ^ x (at) Tx (J‘x i  X t  —> Px-, { X t, Y t) — (p x , P y ),

Z t -> Py , Pt —>■ P* and a t —> a  and vf  —> v 2. Thus, all estim ators converge to 

their exact values. Now, define

A =  u 2 — v 2
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to be the true difference between the corresponding asym ptotic variance pa­

ram eters. An optim al estim ator has AVP

v, =  min (u , v ),

i.e., use the QCV procedure if it is superior to simulation A; otherwise use 

simulation A.

If A >  0, then the AVP of our QCV estimator is less than that of X t 

from simulation A. In this case it can be shown that ^  —»• p*, —»■ (1 —p*) and

^  —► 0 a.s. as t —)■ oo. Thus, the QCV procedure spends asymptotically the 

“right” amount of time doing the correct simulations and an asymptotically 

negligible amount of time running a suboptimal one. Likewise, if A <  0, then 

the AVP of our QCV estimator is more than that of X t from simulation A. 

In this case it can be shown that 6(̂ C( —> 0, and —> 1 a.s. as t —>- oo. If 

A =  0, it is unclear how the QCV procedure will behave and the method is 

not guaranteed to work. However, when A ^  0 it can be shown that vq> = v*.

2.5 Generic Example

We begin this section by describing a “generic” implementation of the 

QCV procedure. Suppose one is interested in estimating p. =  E[f{(p)] where 

<t> =  (0 1, (p2, . . . ,  4>m) is a random vector and /  : —»■ is a well behaved func­

tion, e.g., uniformly continuous. The “generic” approach begins by choosing
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ipj E 37m, j  =  and computing and storing j  =  1 , . . . ,  M . Now,

let (pi, 02) • • • be i.i.d. replicates of 0  and define 7rt- =  argminjeL>2i || 0,- —-0y || 

to be the index of the element of ^  =  {ipi,ip2 , ■ ■ ■, iPm} closest to 0t-. (In case 

of a tie select the last index found.)

Simulation A estimates [i by Monte Carlo simulation. Let N t be the 

number of replicates of / ( 0 i )  the simulation generates up to time t. Then 

simulation A provides

1 Nt ^ = i E / Wt t=i

and

a* {t) = wt {w t -■*?)•

Simulation B estimates p. and \iy — along with the asymptotic co-

variance m atrix by

1 M t  

M t i= i

and 

(
Tv(£) *XY(t)

{  O'Xy O’) ffy-(i) j

(
t

~Mt

i Mt
—  VMi ^

V
£ i = l

m )

f ty v i )

(2.67)

f X f  X tYt '  

K X tYt Yt2 }

where M t is the number of pairs ( /(0 i) , /(0 ttJ )  simulation B generates up to

time t.
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Simulation C estim ates fiy and its asym ptotic variance param eter by

1 Kt
Yt =

i=i

and

oy

where K t is the number of replicates of / ( '0 - l) th a t are generated up to time t. 

Since j  = 1 ,2 , . . . ,  M  is evaluated before the main simulation starts,

there is no need to evaluate /(•) in simulation C. Evaluating tt,- involves finding 

the closest element of 'Jr to <pi, which has complexity O(M), and is therefore 

fast (unless M  is too big). Thus, r  is small: see Remark 2.15. Also, if /  

is fairly smooth and T is “representative” of o then /(<&) and /(t/a,-) will be 

highly correlated. (A reasonable way to choose ^  is to generate M  independent 

replicates of <t>). This approach is particularly effective if /  is expensive or too 

time consuming to evaluate.
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| 3. Stochastic Linear Programs

|

! We present two “real-world” applications. The first is an illustration

! of the generic QCV scheme previously described and involves estimating ex-
!

| pected profits in oil refining, where the operations, i.e., blending and distilling
j

: can be modeled using a linear program. Here, the technology m atrix ( “A -
i
j  m atrix” ) is random. The second application involves power system reliability

I evaluation and employs a linear program with a random right-hand side. In

; this situation a special “dual approximation” procedure suggested by [44] can

] be implemented which be discussed in Section 3.2.
]

3.1 Petroleum Refinery
i
i
i  Oil companies have been using linear programming to plan refinery

l operations for more than 30 years. The activity to be planned is the optimal

; blend and processing management of varying crude oils. Crude oil or just

I crude, as petroleum  directly out of the ground is called, is a remarkably varied
j

I substance, both  in its use and composition. It can be a straw-colored liquid ori

] tar-black solid. Red, green and brown hues are not uncommon. Crude oils also

| vary in their physical characteristics, e.g., density, sulphur content, waxiness,
II 
i i
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etc.. and price. To produce finished products, the crude oil goes through a 

number of processes such as fractional distillation, which separates out the 

light components from the thicker heavier oils; cracking, which breaks down 

the heavy constituents of the crude oil into lighter components; and reforming, 

which changes the chemical structure of other components in order to meet 

product specifications. This is just a brief description of the operations of a 

refinery, and the actual processes are remarkably complex and will be discussed 

in the next section. The refinery can be operated with varying blends of crude 

oils, which generally results in sub-optimal profits. However, the aim of the 

refinery economist is to determine the optimal blend of the various crude oils 

to process in the distiller, the amount of the resulting heavier fractions to feed 

to the cracker, etc., in order to find the most profitable way of meeting the 

expected market for gasoline, diesel, kerosene, propane and other products.

3.1.1 Refinery

Essentially, a refinery is a factory that takes crude oil and transforms it 

into gasoline, kerosene-type jet fuel and many other useful products. Refining 

breaks crude oil down into various components, which then are selectively 

reconfigured into new products. Modern separation involves piping the crude 

oil through hot furnaces. The resulting liquids and vapors are discharged into
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distillation towers. Inside the towers, the liquids and vapors separate into 

components or fractions according to weight and boiling point. The lightest 

fractions, including gasoline and liquid petroleum  gas (LPG), vaporize and rise 

to the top of the tower, where they condense back to liquids. Medium weight 

liquids, including kerosene and diesel oil distillates, stay in the middle. Heavier 

liquids, called gas oils, separate lower down, while the heaviest fractions with 

the highest boiling points settle at the bottom .

The refining process consists of the following six distilling towers:

(1) the topping,

(2) the re-forming,

(3) the thermic re-forming,

(4) the vacuum,

(5) the catalytic cracking unit and

(6) the catalytic polymerizator.

T o pp ing  The first step in refining crude oil is called fractionation 

or topping where the crude oil blend is heated to certain tem peratures and 

distilled into fractions of different boiling ranges. The main fractions of the 

topping are gasoline, propane, butane, Petroleum Fuel Distillates (PFD), ben- 

zolene, naphthalene, kerosene, high boiling residue and some non-vaporized 

fraction which is removed from the bottom  of the fractionation tower.
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R e -fo rm in g  Some fractions of the topping, especially benzolene, 

naphthalene and kerosene can undergo a second distillation in re-forming. Re­

forming is a process that transforms heavy benzene fractions with high boiling 

point and low octane number into lighter benzene fractions with higher octane 

number.

T h e rm ic  R e -fo rm in g  The thermic re-form ing process is similar to 

re-forming except that temperatures are higher; this results in higher gasoline 

production than  in reforming. The input to the thermic re-forming comes from 

the PFD, benzolene and naphthalene fractions of the topping.

V a cu u m  Some of the heated residue from the topping is flushed into 

the vacuum distillation column and undergoes a distilling with reduced pres­

sures. This residue is further fractionated to produce a light fuel oil fraction 

and a very heavy black fuel oil fraction.

C a ta ly t ic  cracking  u n it  A liquid fraction of the vacuum called 

WD is “cracked” in the catalytic cracking unit. Large chains of molecules of 

high-boiling hydrocarbons are broken up and changed into smaller gasoline 

molecules. This process changes the higher-boiling fractions of the petroleum 

distillation into lower-boiling gasoline.

C a ta ly tic  p o ly m e riz a to r The very light fractions of the catalytic 

cracking unit are treated in the catalytic polymerizator. In this unit one obtains
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gasoline of very high quality.

3.1.2 Crude Oil Quality

Variations in the quality of crude oils used by a refinery results in 

varying production yields, which in tu rn  affect profits. Several parameters in­

fluence the degree of crude oil variability. In addition to crude oil location, 

aging production reservoirs, changes in relative field production rates, gather­

ing system mixing of crude, pipeline degradation and injection of significantly 

different quality streams into common specification crude streams contribute to 

crude oil quality variation. “Value” to a refinery is based on the expected out­

put minus the operating costs to be incurred to achieve the desired yield [59]. 

Ensuring that the quality of crude oil received is equivalent to the purchased 

quality is one of the greatest challenges facing the industry today. Analytical 

testing of a received batch of crude oil can be performed whereby a complete 

physical distillation is done on a sample in the laboratory. The results of this 

analysis will determine how the crude is represented in the refinery’s linear pro­

gram model. For instance, suppose a refinery receives several batches of crude 

oil from various reserves. The refiners do not know how these new crudes will 

fractionate. T hat is, they do not have beforehand knowledge of the quantities 

of the various products that will be produced. For example, the amount of
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gasoline th a t can be produced can vary from 13 to 45 percent of the input 

and the amount of butane that can be distilled can vary from 0 to 8 percent 

of the input. Similar variations exist for the o ther fractions. However, as was 

mentioned, laboratory tests can be conducted to determine how various crudes 

will fractionate in the refining process. Once these experiments are completed, 

the refiners know what da ta  to input into their LP model to determine optimal 

blend recipes for refining. Hence, we can view th is situation as a wait-and-see 

solution to a stochastic program where the randomness occurs in the technology 

m atrix of the LP. That is, optimal decisions can be made after the randomness 

is resolved.

3.1.3 Linear Programming Model

We now' illustrate the use of linear program m ing in a petroleum re­

finery. The data is based on a Belgian refinery given in [63]. The structure 

of the linear programming model is simple. T he objective function is profit 

maximization; it will reflect the crude oil cost, additional manufacturing costs 

and the market value for finished products. The constraints of the LP model 

the production flow for the refinery, describing how the inputs can be used for 

a variety destinations. Three types of crude oil, {x \ ,x 2 and r 3 in tons), are 

used as input into the topping. The following eight fractions are produced in
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I the topping: gas, propane, butane, Petroleum Fuel Distillates (PFD ), benzo-

I lene and naphthalene, kerosene, residue and loss. These fractions may have as
rI
! many as 26 destinations having decision variables (x4 through £29)- Table 3.1

gives the percentages of each crude oil that will be transformed into the various 

j  fractions in topping; for instance, 6.0 percent of crude oil 1 (xi), 8.0 percent

; of crude oil 2 (2:2) and 6.8 percent of crude oil 3 (x3) are transformed into the

i PFD fraction. (Later we will treat these values as random variables reflecting

! the varying crude oil qualities.)
|
j This table also indicates that this PFD fraction can be further processed by
i
t

J any combination of the following:

: (1) (xu ) t ° ns transformed into finished product Combustible PFD,

| (2) (x12) tons sent to Thermic re-forming for further processing,

! (3) (X13) tons converted to finished product Gasoline I,

(4) (xu)  tons converted to finished product Gasoline II or 

! (5) (x15) tons left as finished product PFD.

! The aforementioned is modeled in the LP as the following constraint:
i

j 0 .06X1. +  O.O8X2 4" O.O68X3 =  X u +  X42 4" X^3 4" X14 -f- X15 =  0

or equivalently
II
j 0 .06X ], 4- 0 .0 8 x 2 4- O.O6 8 X3  — x u  — x l 2  ~  2 : 1 3  — 2 : 1 4  — X 1 5  =  0 . (3 .1 )

f
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I

Yield of input, % Model
Fraction. * 1 * 2 2:3 Destination Variable
Gas 0.45 0.27 0.30 Combustible x 4
Propane 0.25 0.03 0.30 Propane * 5

Combustible * 6

Butane 0.90 0.80 0.90 Butane * 7

Gasoline I * 8

Gasoline II X g

Combustible * 1 0

PFD 6.00 8.00 6.80 Combustible PFD * 1 1
Thermic re-forming * 1 2
Gasoline I * 1 3
Gasoline II * 1 4

PFD * 1 5

Bensolene & 9.00 11.50 10.20 Thermic re-forming * 1 6

naphthalene JP4 * 1 7

Re-forming * 1 8

Kerosene 25.60 32.40 31.50 Re-forming * 1 9
JP4 * 2 0
Kerosene * 2 1

Gas oil * 2 2

Residue 57.30 Vacuum * 2 3
Fuel * 2 4

46.50 Vacuum * 2 5
Fuel * 2 6

49.50 Vacuum * 2 7

Fuel * 2 8

Loss 0.50 0.50 0.50 Loss * 2 9

T ab le  3.1. Topping

I

I
iI
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For the quantity (x 12) of PFD that is potentially piped to the Thermic re­

forming unit as input (see item (2) in the list above), Table 3.2 shows it will 

be further transformed into gas, gasoline, residue and loss.

Yield o f input, % Model
Fraction ( x i 2 , x i e ) D estination Variable
Gas 29.00 Com bustible 2̂ 38
G asoline 65.00 G asoline I X39

G asoline II 2:40

R esidue 5.00 Fuel 2:41

Loss 1.00 Loss 2 :4 2

T ab le  3.2. Thermic Re-forming

Thus, we see that the initial fractions have innumerable destinations 

and Tables A .l-  A.4, given in the appendix, present analogous data for the 

remaining distillation units. Since varying production plans result in variable 

product yields, the refinery wishes to find the one that will be most beneficial. 

The refinery will, of course, choose the one that maximizes profit. Here, profit 

is the amount of revenue tha t can be generated through the market value of the 

products less the raw material and production costs. So, the objective function 

will reflect the crude oil cost and the revenue obtained from selling the following 

finished products: propane, butane, gas oil, gasoline, JP 4  (jet fuel), pitch and 

kerosene. Table 3.3 gives the cost per ton for each of the various crudes. The 

quality of the crude is reflected in its price. Also, Table 3.4 lists the market 

price for each of the products.
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Crude Oil Cost/ton Variable
1 $118 Xi
2 $150 Xo
3 $170 *3

T ab le  3.3. Raw Material Costs

Product Price/ton Variables
Propane $275 2*5) 3*31 j 2-58
Butane $285 i %331 2-60
Gas Oil $420 2-22 > 2-44 j 2-’53 ? 2-55
Gasoline I $580 3-8 > ^13: 2-35) -̂39) ^51: '̂62
Gasoline II $538 *̂ 9: -̂ 14) 2-36 J *̂ 40: ^52: '̂63
JP4 $260 X l 7 :  2-20
Pitch $207 2̂ 45
Kerosene $277 X o i

T ab le  3.4. Product Prices
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Thus the objective is to maximize the following function:

/  =  — 118xi — 150x2 — 170x3 4- 275 (x5 4- x3i +  x58)

4 - 2 8 5  ( x j  4 -  x 3 3  4 -  X go) 4 -  4 2 0 (X 2 2  4 -  X 4 4  4 -  X 5 3  4 -  X 5 5 )

4 - 5 8 0 ( x 8  4 -  X i 3  4 -  x 3 5  4 -  x 3g 4 -  x $ \  4 -  X 6 2 )

4 - 5 3 8 ( x g  4 -  X 1 4  4 -  x 3 6  4 -  X4 0  4 -  X 5 2  4 -  X 6 3 ) 4 -  2 6 0 ( x i 7  4 -  X 2 0 )

4 - 2 0 7 x 4 5  4 -  2 7 7 x 2 1 -

O ther constraints tha t are included in the model involve distilling 

capacities. The topping unit can hold at most 5000 tons of crude and thus we 

include the following constraint in our model:

Xi 4- x2 4- x3 <  5000. (3.2)

The other capacity constraints included in the model are described in Table 3.5

Colum n Input variables C apacity (tons)
Topping 1 j 2*2  j ^3 5000
R e-form ing X 187249 500
T herm ic R e-form ing X l2 , X 1 6 250
Vacuum 2-231 X 2 5  j X 2 7 None
C atalytic  cracking X4 3 400
C atalytic  polym erizator ^50 None

T ab le  3 .5 . Distilling Capacities

This concludes the description of the linear program model for the

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



petroleum refinery problem. Note that the fractionation Tables 3.1- 3.2 and 

Tables A .l -  A.4 present the fractionation percentages as known constants. As 

was stated before, we wish to incorporate uncertainty in the LP model. Thus, 

we will consider the da ta  presented in the tables as the mean fractionation per­

centages and allow for a 20% uniform deviation. This uncertainty distribution 

was our choice and although this deviation may not be realistic, it suited our 

purposes to demonstrate the QCV procedure. For instance, in Table 3.1 note 

th a t 25.6% of crude oil 1 will fractionate into kerosene. In the LP model this 

will be represented as a uniform random variable tha t ranges from 20.48 to 

30.72. All other data in the table will be treated similarily.

3.1.4 Numerical Experiments

We now demonstrate the “generic” version of the QCV procedure 

described in Section 2.5. Our goal is to estim ate the expected value of the ob­

jective function of an LP whose technology or constraint matrix is random. The 

linear programming and simulation code was w ritten in C using the compilier 

Microsoft Visual C-f-+ 6 .0 . The first operation of the estimation procedure is 

to construct and store the representative set 4/ =  ipo, ■ - ., (see sec­

tion 2.5) which in our setting is merely M  independent replicates of the random 

technology matrix. For each of these M  matrices we compute and store the
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corresponding LP objective function value. The time spent on this construc­

tion is the overhead and increases as a function of the number of points. The 

function /  is the objective function of the LP.

The experiment consisted of allotting t =  1 minute tim e unit for 

the entire simulation including the overhead and the QCV procedure. Each 

time segment was five seconds long (see Section 2.4). We are interested in 

determining how various parameters of the simulation behave as a function of 

the number of points in P . For instance, one would expect tha t the correlation 

p would increase as a function of the number, M ,  of points in 'P. Also, it 

would seem reasonable tha t the ratio r  should also increase. Thus, given a 

finite simulation time of one minute, an item of interest is how many points 

to include in P. If too few points are used, one would not expect a large 

correlation and the QCV will not be effective. If many points are involved, 

too much time will be spent in the overhead and very little time will be spent 

performing the main simulation. Hence, one would expect an “optim al” choice 

for the size of P.

Figure 3.1 illustrates how the various parameters behave as a function 

of M .  Note that since the placement of the points in P  is random, the resulting 

parameters, i.e., r, p and the AAV will also be random. Thus, the points on the 

graphs are averages taken over 20 replications of the experiment. As expected,
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we see th a t the time it takes to build the approximation is a linear function 

of M .  The correlation function is the most encouraging. Notice tha t it rises 

quickly in a concave downward fashion reaching 0.90 with 100 points in the 

approximation. The graph then tends to flatten out. Thus, we get more “bang 

for the buck” early in the construction achieving a high correlation with only 

a  few points in the approximation. We also have displayed the ratio r  and the 

optim al proportion p* as a function of M .  We note that the more points we use 

in our approximation, the more time is spent on simulation C in estimating the 

control variate mean. The question then becomes the following: “How many 

points should we include in the approximation?” . Figure 3.2 plots the AAV 

variance as a function of M . We see tha t if we have too few points, e.g., less 

than 50, our variance will be large. The graph reaches a minimum at about 100 

points and then begins to increase with the addition of more points. This is 

because the marginal gain in higher correlation is not worth the marginal effort 

of adding more points; also, w ith the addition of more points the time spent 

on constructing the approximation becomes a significant part of the alloted 

simulation tim e and little is left for the main experiment.
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3.2 Stochastic LP with random RHS

As was illustrated in the previous section, the estimation of the mean 

of the objective function of an LP whose constraint m atrix is random is a great 

example of the “generic” application of the QCV procedure. We now illustrate 

the QCV scheme in a situation with a stochastic linear program with random 

right hand sides. In this case there is a special utilization of the QCV proposed 

by Oliveira, Pereira, Pinto and Cunha [44].

Let .4 be an m  x n  m atrix and let c 6  For b €  let

P{b) =  min { c x \A x  > b , x >  0}. (3.3)
x  e  SRn

We will refer to this problem as the primal problem. One might be interested

in estim ating /l =  E[P(4>)\, where <p =  (p1, <jr,. . . ,  4>m)' is a random (right hand

side) vector. Of course one approach would be to generate N  i.i.d. replica­

tions {<pi, (p2 , ■ - ■, 4>n} of 4> and solve N  linear programming problems to obtain 

P(<pi), i =  1 , . . . ,  N. Our estim ate of E[P(4*)] would be

A =  (3-4)
i v  1 = 1

which is obtained in simulation A.

If the linear program is large, one may spend much time obtaining 

each solution. Consider the dual problem to (3.3)

D{b) — max { hx |7r.4. <  c, tt >  0}, (3-5)
7T e
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The AAV as a function of Number of Points
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F ig u re  3.2. AAV as Function of Number of Points in Approximation
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and note th a t the feasible region is independent of b.

Our goal is to construct a control variate that is highly correlated with P((p), 

but can be obtained much quicker than solving the primal problem. Thus, we 

need to find a problem that retains the primal problem’s characteristics yet 

is much simpler to solve. Our simpler model will be a dual approximation to 

the primal problem. Consider the polyhedron H  =  {7r |7r.4 <  c,~  > 0}, which 

we consider to be bounded and nonempty to facilitate the exposition, and its 

extreme points E xt(H )  =  {7T]., 7t2, . . . ,  7rn}. It follows from the Fundamental 

Theorem of Linear Programming and the equivalence of extreme points and 

basic feasible solutions [41] that

P(b) = m ax  {bTTi\TTi G E xt(H )} . (3.6)

This suggests how we should construct our simpler model. Instead of 

enumerating all the extreme points of H ,  construct a potentially small subset 

H' C E x t(H )  and let

D*(b) = m ax  {b iz^ i  €  H'}, (3.7)

be the dual approximation or control variate for the primal problem. Thus, 

provided th a t \H'\ is not prohibitively large, obtaining a solution to (3.7) is 

much faster than  solving the original primal problem for a given replication of
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(j>. Thus, our QCV equation for this application becomes

P*(«p) =  P(<?) +  a*(P>*(0) -  £>’). (3.8)

where (P (^), D*{q>)) are the random, pair generated in simulation B and D* is 

the estimate of E[D*(<p)] computed in simulation C.

3.2.1 Construction of the Dual Approximation

Two methods are considered for constructing a dual approximation 

to problem (3.6), that is, to generating the set H ' . One approach is to enumer­

ate the desired number of vertices of H  using a deterministic algorithm and 

the other is to randomly generate them from the density of <p. It is not read­

ily clear which approach would be better suited for our needs. Deterministic 

vertex enumeration would guarantee obtaining a new vertex at each iteration 

whereas a random selection approach might spend valuable simulation time 

producing the same vertex. However, since we will be generally dealing with 

very large problems, the chance of generating a previously obtained vertex 

would be very small. Also, generating the vertices randomly may “probabilis­

tically” produce a better dual approximation since it would generate those that 

would most likely appear in the actual Monte Carlo simulation. In constrast, 

the deterministic algorithms simply pivot from one vertex to another and may 

be able to find an abundant number of vertices quickly. In random generation,
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a linear program would have to be solved for each vertex. Finally, the purpose 

of deterministic algorithms is to find all the vertices and extreme rays. We 

merely want to generate a subset of them. As will be seen in Section 3.2.4, a 

suprisingly small subset of dual vectors is required to induce a high correlation 

between the primal and dual approximation. Numerical experiments clearly 

indicated that the random generation of the vertices is superior.

3,2.2 Deterministic vertex enumeration

Much literature and research are devoted to polyhedral vertex enu­

meration; it has applications in robotics, quantum  chemistry and multicom­

modity flows. Fukuda and Avis [4] develop a clever pivoting algorithm for 

vertex enumeration, which is based on “inverting” finite pivoting algorithms 

for linear programming. We coded and employed an adaptation of their pivot­

ing algorithm for our purpose.

We first give motivation for and then a verbal description of the ver­

tex enumeration algorithm. Suppose we wish to enumerate all vertices of the 

following non-empty, bounded, non-degenerate, n  dimensional polyhedron

H  = {x\A x  =  b x  > 0}, (3.9)

where A is a full rank, m  x n matrix and b G 5Rm.

We first give a definition.
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D efinition. 3.1  Given the set (3.9), let B  be a nonsingular m  x m  

subm atrix made up of columns of .4, such that B ~ lb > 0. Then, if all 

n — m  components of x  not associated with columns of B  are set equal 

to zero, the solution to the resulting set of equations is said to be a basic 

feasible solution to (3.9) with respect to the basis B. The components of 

x  associated with columns of B  are called basic variables; the remaining 

components are called non-basic variables whose associated columns are 

represented in the subm atrix N  of A.

Assume that the following linear program has a unique optim al solu­

tion x*:

min { cx\x  £ H \ .  
x € R"

(3.10)

The motivation and philosophy of their algorithm is based on the 

simplex method of linear programming. Starting from some initial vertex, the 

simplex method essentially traverses a sequence of adjacent vertices of H  until 

it reaches x*. We arrive at each adjacent vertex by performing a pivot whereby 

a non-basic variable is introduced into the current basis and a basic variable 

leaves. The pa th  chosen from the initial vertex depends on the pivot rule which 

must be chosen to avoid cycling. Anti-cycling pivot rules guarantee that we 

will reach the optimum in a finite number of steps. We use a particularly 

simple rule, known as Bland’s rule [9], which guarantees a unique path from
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any starting vertex to the optimum vertex. Conceptually, we could implement 

this simplex procedure from every vertex of H  to arrive at our optimum x*. 

Now, if we look at the set of all paths from all the vertices of H , we obtain 

a spanning forest of the graph of adjacent vertices of H.  The root of each 

subtree of the forest is the optimum vertex. However, if the polyhedron is 

non-degenerate (as we assume), each vertex lies on exactly n hyperplanes. In 

this case, the spanning forest has one component, which is a spanning tree of 

the “skeleton” of the polyhedron, and each vertex is produced once. Before we 

describe how the algorithm works, we give another definition.

D e fin itio n  3.2 Let B  be a basis for (3.10). Given a column v in B and 

a non-basic column u in N ,  a valid reverse pivot is one that if we were 

to pivot u into the basis to obtain the new feasible basis B  — v + u and 

then apply Bland’s rule to the updated tableau we would pivot back to 

the original basis B.

The vertex enumeration algorithm procedes by first finding the op­

timum vertex x*. We now have a basic feasible solution and basis B  for this 

vertex. The vertex enumeration algorithm now proceeds by fixing the first 

column of B  and attempts to perform a valid reverse pivot for each nonbasic 

column with this fixed column of B.  If it finds no valid reverse pivot, the
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algorithm then holds the second column of B  fixed and again attem pts to find 

a valid reverse pivot with each of the non-basic columns, and so forth. If in 

the course of the aforementioned interation it finds a valid reverse pivot, the 

algorithm pivots to that vertex, saves it, updates the basis to B' and starts 

the entire procedure over by holding the first column of this basis B' fixed and 

attem pting to find a valid reverse pivot with the new set of non-basic columns. 

Now, if the algorithm does not find a valid reverse pivot for some given basis, it 

applies B land’s rule and performs a simplex pivot moving back up the tree basi­

cally “revisiting” a basis. Here, the algorithm continues where it left off (when 

it last encountered this vertex before descending into the tree) by scanning the 

remaining non-basic columns to find valid reverse pivots. So, the algorithm 

proceeds to trace out the entire tree in depth first order by “reversing” Bland’s 

rule.

Avis and Fukuda [4] analyze the time-complexity of the previously 

described algorithm. We reproduce the arguments here. Note, (3.9) can have 

at most basic feasible solutions. For each basis, we may evaluate m{n — m) 

candidates for valid reverse pivots, each candidate requiring 0 ( m  tl) time. 

The pivot requires 0 (m (n  — m))  time per execution. Therefore, the overall 

time-complexity of the enumeration procedure is
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O ( (m -f- n) mn(  U

3.2.3 Random vertex generation

The random generation of th e  dual vertices of H  is quite simple. One 

merely generates independent replicates 2, -. .} of 4> and solves D((pi) to 

obtain a vertex yi , i  = 1, . . .  and if this vertex is not already on the current list 

it is added.

3.2.4 Random vs. deterministic generation

Numerical experiments clearly suggest (at least for the test problems 

and enumeration algorithms we used) th a t for our purposes a random genera­

tion approach is superior to a determ inistic approach. We performed various 

numerical experiments to determine the  number of dual vertices to be included 

in an approximation.

We considered two generic polytopes, one tha t would have “equally” 

probable vertices and one with non-equal probable vertices. We chose these 

artifically constructed problems for a couple of reasons. Firstly, several real 

world problems that were initially tested were demonstrated to have high cor­

relation with only a few dual vertices and  did not “challenge” the QCV scheme.
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Secondly, we wanted control and full knowledge of the polytopes so that accu­

rate statem ents could be made about the numerical results. For example, in 

both of the test problems below, we know that each has 2" vertices in the dual 

problem.

Test Problem 1. ("Equally” Probable Vertices):

min { ex  | x  > £, x  > 0}. 
i e r

(3.11)

where e =  [1, . . . ,  1] is the unit vector of length n and & ~  U[—99,101], i =  

1 , . . . .  n.

For the “equally” probable case we would expect for the correlations 

that resulted from enumerating the vertices or generating them randomly to be 

comparable. Figure (3.3) does suggest this since the corresponding correlations 

are similar. However, we do notice a consistently larger correlation for those 

that were randomly generated. W hat is important however is how long it 

takes to build the dual approximations. Notice that Figure 3.4 gives the time 

required to build a dual approximation where the x-axis represents the number 

of dual vertices in the approximation. The graph which is based on a log- 

linear scale clearly indicates th a t in order to achieve comparable correlation 

that the random enumeration procedure yields, one would have to spend a 

substantially longer amount of tim e with the vertex enumeration procedure.
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Correlation vs. Size of Dual Approximation for Equally Probable Case
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x-Enumerated.
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Construction Time vs. Size on a Log-Linear Scale for Equal Probable Case
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For clarity, we wish to emphasize th a t n  =  10, 25 or 50 corresponds to the 

linear program having 2" extreme points, basic feasible solutions or vertices in 

the dual problem.

Test Problem 2. (Non-Equally Probable Vertices):

min nx\_ + (n — 1)2:2 +  — + xn

st xi > n^i -r n

2:1 -t- 2:2 > (n — 1)^2 +  (n — 1)

2:1 -F 2:2 +  • • • + x n > £n +  1

X i >  0, i =  1 , . . . ,  n

where ~  U[—1/2,1/2].

The non-equally probable test problem is more interesting. In this linear 

program, only a small subset of the dual vertices will actually be generated in the 

Monte Carlo simulation. Thus, one would expect that vertex enumeration would be 

inferior to the Monte Carlo approach. That is, enumeration might produce unwanted 

dual vertices that the Monte Carlo simulation would never generate, thus not aiding 

in the effort of increasing correlation. Notice that Figure 3.5 suggests this since 

the correlations that were generated by enumeration were below 0.3 as they did not 

appear on the graph for n  = 25 and 50. Again, Figure (3.6), as in the "equally” 

probable case, indicates that the amount of time required to build the approximation
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Correlation vs. Size of Dual Approximation for Non-Equal Probable Case

s3
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F ig u re  3.5. Correlations for Non-Equally Probable Case: o-Randomly Gen­
erated, x-Enumerated
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Construction Time vs. Size on a Log-Linear Scale for Non-Equal Probable Case
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o o o
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F ig u re  3 .6 . Log-linear plot of Time to construct Dual Approximation for 
Non-Equally Probable Case
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is much larger than for random generation. These experiments indicate that random 

generation is superior, at least for the cases investigated, to enumeration for the 

construction of the dual approximation.

| -3.3 Power System Reliability Evaluation
i1

I The primary function of an electric power system is to provide electricity to

j its customers as economically as possible with minimal disruption. Due to random
iIi
i  component failures of the system that may be outside the control of the power
i

j system personnel, the continuous supply of electrical energy may not be available on

; demand. The supply of electricity generally involves a complex and highly integrated
j

i system; failures in any part can cause interruptions which range from inconveniencing
i

i  a few local residents to widespread outages. The need for probabilistic evaluation

of power system behavior has been recognized at least in the last forty years and 

] has now evolved to the point at which most utilities use these techniques in one or

j  more areas of their planning, design and operation. Many of the methods used are

i based on analytical models and evaluation procedures [6]. However, the continual
!

i  advancement of high-speed computing power has created the opportunity to analyze

| more complex and intricate models using stochastic simulation methods, and in the
)
! last decade there has been increased interest and use of Monte Carlo simulation in
i
j  quantitative power system reliability applications.
i

• Power system reliability evaluation has been extensively developed using
i

|
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probabilistic methods where a wide range of appropriate indices have been deter­

mined. There axe many possible indices that can be used to measure adequacy or 

reliability of a power system [7, section 2.6]. The most popular reliability indices 

are the following: loss of load probability (LOLP) and expected power not supplied 

(EPNS). Many power system planning applications can be modeled using linear pro­

gramming problems with stochastic right-hand sides [7, 44, 52]. Here the linear 

program represents the power network equations and constraints. The objective 

function is to minimize the interruption of power supply to customers where the 

right-hand side contains the capacities of the system generators, which are subject 

to random failures. We describe in detail this model in section 3.3.3.

3.3.1 Power Systems

The major parts of an electric power system axe the generation, transmis­

sion and distribution systems. One may think of a power system as an extremely 

complicated electrical network. Power systems are basically a network of buses or 

nodes (buses and nodes will be used interchangeably) interconnected by transmission 

lines that carry the power flow. A bus is essentially an assembly of conductors for 

collecting electric currents and distributing them throughout the network. Also, each 

bus has an associated load that corresponds to a regional customer power demand 

that it serves; furthermore, some buses have generators that inject power into the 

network. Each bus has the following four associated parameters:

(1) Voltage magnitude (V),
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(2) Voltage Angle (5),

(3) Real Power Injection (P) and

(4) Reactive Power Injection (Q).

These parameters along with a basic coverage of circuit theory and the 

mathematical representation of load flow between the buses in the network will be 

discussed in further detail in the next section.

3.3.2 Fundamentals of Circuit Theory

For the following discussion, we advise consulting an engineering text on 

circuit analysis such as [34] for the technical description of the electrical terms and 

concepts; see also appendix C in [7]. One may think of power as the rate of change 

of energy with respect to time. The unit of electrical power is the watt (W), which 

is a joule per second. A load is an electrical device connected to a power source. The 

electrical power consumed by a load depends on two things: how much voltage is 

applied to the device, and how much current (flow of electricity) flows through the 

device. For example, a 100 watt light bulb consumes 100 joules of electric energy 

each second.

The mathematical representation of power flow through a network is a 

system of nonlinear equations. These equations are based on Kirchhoff’s current 

and voltage laws. The current law basically states that the current entering and 

leaving a bus or node must be equal and the voltage law states that the total voltage 

around a closed loop must be zero.
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Power flow in a network has two main components: the “real” power P  

in watts (W) and the “reactive” power Q in voltamperes-reactive (var). In general, 

electrical engineers refer to P as the resistance and Q as the reactance. Let fli be the 

set of all nodes connected to bus i, i =  1, . . .  ,n. The real (3.12) and reactive (3.13) 

power injections at bus i are given by the following alternating current load flow 

equations:

P i =  p ij = vA Gij cos sij +  B ij sin 5ij) (i =  1, - - -, n) (3.12)
jesii jeQi

Qi = Y2 Qii = Vj(Gij sinSij -  B ij  cos %) (*' =  ! , . . . ,  n), (3.13)
j€Cli ietii

where Vi and 5,- are the magnitude and angle of the voltage at bus i: 5{j = Si — 8j is 

known as the power factor angle. Gij and Bij are called conductance and susceptance 

of circuit ij, respectively, and n is the number of system buses. It can be shown that

and B n = Xij
i] v - R t j  +  X ^

(3.14)

where Rij and X ij axe the resistance and reactance of circuit ij.

Note that each bus has four variables, Vi, S{, Pi and Qi and that the nonlinear system 

has 2n equations with 4n variables. Thus two of the aformentioned variables for each 

bus must be prespecified; generally, P, and Qi are specified. These loadflow equations 

can be solved numerically for Vi and S{ using an iterative method such as the Gauss- 

Seidel or Newton-Raphson method. From the solution, the total real and reactive 

power flows in line i j  become

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P i j  =  ViVj (G i j  cos Sij 4- B i j  sin  <Sy)

Qij — Sin S i j  B i j  COS ).

(3.15)

(3.16)

However, since reliability evaluation studies require that load flows must be repeated 

for each state or scenario of the system, e.g., tie—line failures or generator outages, 

assumptions are made in power networks that greatly simplify the nonlinear com­

plexities of (3.12)-(3.13). Often, reactive power is of no concern and thus the sys­

tem (3.13) can be dismissed. That is, many of the important reliability indices 

are associated with real power load curtailm ents and calculating these only requires 

real power related information. Furthermore, in power systems, power factor angles 

5ij are generally very small and thus the following approximations can be made: 

sin S(j «  S{ — 5j and cos Sij ~  1. Also, circuit reactances are normally much larger 

than circuit resistances (Xij »  Rij) thus, reliability engineers generally use the 

following approximation from (3.14) for circuit conductance and susceptance:

~ 0 and Bij =  — ^
1

y R l  +  X l  ~  X~j ■ (3’17)

Network reactances, resistances, real power, reactive power and voltage 

are usually expressed in a “per unit” (p.u.) system wherein a reference voltage and 

usually (mega watts) MW level are specified and all variables are normalized with 

respect to these references. In a per unit system, the voltage magnitudes are usually
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unity. Here, all bus voltage magnitudes are assumed to be 1.0 p.u. Thus, based 

on the above assumptions and using (3.15) the real line flow in a branch can be 

calculated by

p . .  _   £ 7.
”  V  - ’■A~l]

(3.18)

therefore bus real power injections are

P i  — P i j  — B u S i  y  ] B i j 5 j  [ i  — 1, . . . .  n), 
jefii yen,-

(3.19)

where

B{j — — , Bn — y  ' Bij and 
yen,-

is the set of all branches connected to bus i.

Now, equations (3.19) can be represented in matrix form:

P  = B6,

(3.20)

(3-21)

where B = [Hiy] is the susceptance matrix and S = (<5i, S2 , ■ ■ ■ • Sn)', where / means 

transpose. In addition, we assume that lines are lossless, that is, P1+P2 + , — , +Pn =

0. This ensures that the load demanded is greater than or equal to the load generated. 

Note that (3.21) is a linear system and the real power injections depend only on the 

bus voltage angles; however, B  as defined in (3.20) is singular. Since the equation 

for node n  is the negative of the sum of the equations for nodes 1, . . . ,  n — 1 the linear
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system involves only n — 1 independent equations. Essentially, the last equation is 

redundant. Thus, engineers typically will assign a zero node voltage angle to node 

n and then solve the following system:

Pq = Bq Jo, (3.22)

where B q  is the [n — 1) x (n — 1) submatrix of B  obtained by deleting the last 

row and column of B , Jo =  (<5i, 2̂, • - -, ^n-i) and Pq  =  (Pi, P2, • • •, Pn-i)- Here 

Po =  Pi -F P2+, - • -, + P n-i to ensure the equality of supply and demand and hence 

node n is often referred to as the slack bus.

The solution of (3.22) involves matrix inversion which can be accomplished 

directly and is, therefore, much faster then the iterative methods needed for solving 

the original nonlinear equations. This method of determining the real flows through 

solving first for the bus angles is often referred to as the linearized DC method of 

load flows, in contrast with the exact, non-linear solution, which is termed the AC 

solution. The term "DC load flow” arose because the Unear relationship between P 

and J  is analogous to the relationship between current and voltage in a direct current 

network, which contains only resisters.

3.3.3 Linear Programming Power Flow Model

Power system reUability evaluation can be modeled as a Unear program 

with stochastic right hand sides. There are two main classes of constraints: (1)
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power flow equations and (2) operating constraints. U sing the m odel we developed  

in the previous section, the power flow equations axe m odeled by the following set 

o f linear equations:

B q 5q + go =  do, (3.23)

where B q is the su scep ta n ce  m atrix, 5q is the vector o f node voltage angles, go =  

(ffi,S 2 , ••• ,0 n - i )  is the active power generation vector and do =  (di, d i ,  ■ ■ ■, d n - i )  

is the load vector. That is, go{ is the generating capacity in  M W  o f the i th bus. If 

a given bus does not have a generator, then the corresponding generating capacity  

is 0. Likewise, do; is the load at bus i .  B y rewriting (3.23) as B qSq =  do — go we 

can compare it to (3.22) so that do — go corresponds to P q . A  positive element o f  

do —go represents a bus load and a negative value represents available capacity. Thus, 

given go and do, the solution vector 5q to (3.23) is found and active power flow in 

circuit i j  is given as Pij  =  — 5 j ) / X i j \  see (3.18). Consequently, these equations

m odel the distribution of electrical power in the network circuits. Load uncertainty  

always exists in actual power system s and it has long been recognized that they can 

have a great impact in power system  reliability evaluation. A n  accepted approach 

to sim ulating load uncertainty is to m odel the load as norm al random variables. 

T he m ean values are estim ated load means based on historical data. The standard  

deviation is assigned according to the perceived load forcast uncertainty, such as 5%.

T he operating constraints place lim its on power generation goi <  gox and
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power flow Pij < Pij. The generating units in the capacity vector are subject to 

random failures and are thus modeled as random variables. For example, suppose 

a generator on a bus, say i, is comprised of three units each having a generating 

capacity of 100 MW. Each of these units is prone to failure and so we can model the 

total capacity available at generator i as the following random variable:

3

§i =  Y ,  100*A:, (3-24)
f c=l

where Xk > k =  1 , . . . ,  3 are independent Bernoulli random variables. If Xk — 0 for 

some k, then the corresponding generating unit is down, otherwise it is operating. If 

Xk =  0 for all k, then no power can be supplied. This modeling technique is similarily 

used for all buses with generators. Likewise, weather related outages of transmission 

lines can cause entire power interruption between system buses. To model power 

line outages between circuit ij, we use the following random variable.

3

Pij = ^  j CAPijXij, (3.25)
k=l

where CAPij is the flow capacity of circuit i j  and Xij is a Bernoulli random variable.

Overloads caused by generator or circuit outages can often be eliminated 

by rescheduling the system generators. In some severe situations, it may be nec­

essary to curtail load in the system; that is, to potentially redirect energy through 

the network to minimize load curtailment. Load curtailment is represented by “fic­

titious” generators placed at each bus. That is, when the required load at a given
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bus cannot be com pletely satisfied due to the insufficient to ta l availability generating  

capacity an d /or  lim its o f tie line capacities, the “fictitious generator variables” can 

provide the required load such that power balance a t each bus is always guaranteed. 

Thus, th e  fictitious generator variables are load curtailm ent variables for each as­

socia ted  bus and therefore the upper lim it is assigned as the associated bus load. 

The generator variables, the fictitious generator variables and tie lines constitute a 

generator-transm ission system . T h e  objective is to m inim ize tota l load curtailment 

while satisfy ing  the power flow equations and operating constraints. The following  

linear program  [1, 43, 44, 52] can b e  used for this purpose:

L ( d , g ,  / )  =  min 

s.t.

i = l

B S  -1-  g  +  r  =  d

9 < 9

r  <  d

I Pi <  P i j  for all circuits i j

g, r  >  0, 6 free.

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where is the “fictitious generator variable” at bus i .  Hence EPN S =  E [ L (d ,  g,  f ) \  

and LO LP =  E [ 1 l ^ §j )>0].

W e em ploy the load curtailm ent linear program m ing model presented in 

the previous section to dem onstrate the use of quasi control vaxiates. The IEEE
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Subcommitee on the Application of Probability Methods has developed a Reliability 

Test System [48] (RTS) which includes both generation and major transmission 

facilities. The main objective was to provide a standard basic model which could 

be used to test or compare methods for reliability analysis of power systems. Using 

a modified version of the RTS we estimate the EPNS and LOLP. Tie line and bus 

generating capacity data are given in Tables B.l and B.2. Notice that this table 

also provides the probability failure of a given tie line and its capacities in MW. 

Generating unit capacities are given in Table B.3 and bus load data are provided in 

Table B.4.

3.4 Numerical Experiments

Using the algorithm described in Section 2.4 we allot 60 seconds for the 

nth  segment and allow for a total simulation time of t = 30 minutes. We consider 

various dual approximations where u, given in the Table below, represents the num­

ber of dual vertices. Also, p is the correlation between the objective functions of the 

analytical problem and the dual approximation; r is the relative effort involved in 

obtaing the objective function value of the approximate problem to that of solving 

the linear program in the main simulation. Results are given in Tables 3.6 and 3.7 

where the Speedup is defined as the estimated variance of the “crude” Monte Carlo 

estimate divided by the variance of the QCV estimator. Also, due to the length of 

the simulation time, overhead costs are insignificant.
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III

i

V
EPNS

Speedup P r
2 2.31 0.829764 0.018577
5 2.70 0.853090 0.020492
10 3.66 0.871843 0.025262
15 3.35 0.876689 0.025749
20 5.31 0.921301 0.027271
25 6.40 0.941632 0.028887
30 6.38 0.935184 0.031484
40 6.12 0.942480 0.034804
50 6.87 0.950231 0.035146
80 8.72 0.963415 0.041050

T ab le  3.6. EPNS Speedup

i

V
LOLP

Speedup P r
2 4.73 0.900753 0.020569
5 4.86 0.907416 0.021833
10 6.29 0.931023 0.023687
15 5.31 0.918041 0.025076
20 5.78 0.931357 0.026676
25 6.03 0.931847 0.028752
30 8.10 0.950192 0.031000
40 10.8 0.967068 0.032710
50 8.51 0.954699 0.036998

!

| T ab le  3.7. LOLP Speedup

i|
i

i
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I

j 4. Conclusion and Future Work 

4.1 Summary

We have generalized the notion of classical control variate methodology to 

the case where the control variate mean is unknown and have developed a procedure 

for its implementation in applications. We have demonstrated through a couple 

of “real-word” illustrations that the QCV scheme potentially provides tremendous 

speedup.

4.2 Future Research

In our research, we considered having only one QCV estimator. A possible 

extension to the QCV scheme is the potential of multiple estimators. Also, we used 

the QCV scheme to estimate the mean of the objective functions of stochastic linear 

programs. It would be interesting to incorporate the QCV method into algorithms 

for actually solving stochastic programs. One such algorithm may involve stochas­

tic quasi gradient methods whereby we attempt to improve efficiency in estimating 

the quasi gradients. We demonstrated examples that involve exclusively linear pro­

gramming models. We would like to see new applications for the QCV method,

i.e., stochastic integer problems, stochastic networks or stochastic vehicle routing 

problems.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. APPENDIX Refining Fractionation Data

Y ield  o f  input, % M odel
Fraction. (2 :1 8 , 2:1 9 ) Destination Variable
Gas 8.00 Com bustible 2̂ 30
Propane 4.00 Propane 2 :3 1

Com bustible 2̂ 32
Butane 4.50 Butane 2̂ 33

Com bustible 2 :3 4

Gasoline 81.50 Gosoline I 2̂ 35
Gasoline II 2̂ 36

Loss 2.00 Re-form ing 2 :3 7

Table A.I. Re-forming
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Yield of input, % Model
Fraction (^23,2:25, £27) Destination Variable
WD 47.00 Catalytic cracking 2 : 4 3

Gas Oil 5.00 Gas oil X 4 4

Residue 43.00 Pitch 2^ 45

Fuel 2-46

Combustible X4 7

Loss 5.00 Loss 2^48

T able  A .2 . Vacuum

Yield of input, % Model
Fraction (2 :4 3 ) Destination Variable
Gas 3.50 Combustible X 4 9

Catalytic 7.50 Catalytic 2^50
polymerizator polymerizator
Gasoline 22.00 Gasoline I 2^51

Gasoline II 2^52

LCO 32.00 Gas Oil £ 5 3
Fuel 2^54

HYCO 28.50 Gas Oil 2-’5o

Fuel 2^56
Loss 6.50 Loss 2^57

T able A .3. Catalytic Cracking Unit

Yield of input, % Model
Fraction (2 :4 3 ) Destination Variable
Propane 10.00 Propane 2^ 08

Combustible 2^59

Butane 30.00 Butane 2-60
Combustible 2^61

Gasoline 60.00 Gasoline I 2^62
Gasoline II 2*63

T able  A .4 . Catalytic polymerizator
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III
ItI

i

I
!{
i

B . A P P E N D IX  P o w er S y s tem  B us a n d  T ie —L ine d a ta

From
bus

To
bus

Susceptance 
(p.u. 100 MW base)

Capacity 
(MW) "

Failure
Probability

I 2 71.9 175 0.00044
1 3 4.7 175 0.00058
1 5 11.8 175 0.00038
2 4 7.9 175 0.00045
2 6 5.2 175 0.00055
3 9 8.4 175 0.00043
3 24 11.9 400 0.00175
3 24 11.9 400 0.00175
4 9 9.6 175 0.00041
5 10 11.3 175 0.00039
6 10 16.5 175 0.00132
7 8 16.3 175 0.00034
8 9 6.1 175 0.00050
8 10 6.1 175 0.00050

T ab le  B . l .  Branch Data

i

i

!

}

i
i
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i

i

i!
i

i

From
bus

To
bus

Susceptance 
(p.u. 100 MW base)

Capacity
(MW)

Failure
Probability

9 11 11.9 400 0.00175
9 12 11.9 400 0.00175
10 11 11.9 400 0.00175
10 12 11.9 400 0.00175
11 13 21.0 500 0.00050
11 14 23.9 500 0.00050
12 13 21.0 500 0.00050
12 23 10.4 500 0.00065
13 23 11.6 500 0.00062
14 26 25.7 500 0.00048
15 16 57.8 500 0.00041
15 21 20.4 500 0.00051
15 24 19.3 500 0.00051
16 17 38.6 500 0.00044
16 19 43.3 500 0.00044
17 18 69.4 500 0.00040
17 22 9.5 500 0.00068
18 21 36.8 500 0.00044
19 20 25.3 500 0.00048
20 23 46.3 500 0.00043
21 22 14.7 500 0.00057

T ab le  B .2 . Branch Data (cont.)

ii

I
I
j
S
j1
!
!t

9S
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Bus
Unit 1 

p.u.
Unit 2 

p.u.
Unit 3 

p.u.
Unit 4 

p.u.
Unit 5 

p.u.
Unit 6 

p.u.
1 0.20 0.20 0.76 0.76
2 0.20 0.20 0.76 0.76
7 0.10 0.10 0.10 0.10

13 1.97 1.97 1.97
15 0.12 0.12 0.12 0.12 0.12 1.55
16 1.55
18 4.00
21 4.00
22 0.50 0.50 0.50 0.50 0.50 0.50
23 1.55 1.55 1.55

T able B .3 . Generating Unit Locations

!
f
i

Bus
Load
(p.u.) Bus

Load
(p.u.)

1 1.08 10 1.95
2 0.97 13 2.65
3 1.80 14 1.94
4 0.74 15 3.17
5 0.71 16 1.00
6 1.36 18 3.33
7 1.25 19 1.81
8 1.71 20 1.28
9 1.75

T able B .4 . Bus Load Data
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